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C-sets can be understood as reducts of ultrametric spaces: if the

distance is d, we keep only the information given by the ternary

relation

C(x, y, z) ⇐⇒ d(x, y) = d(x, z) ≥ d(y, z).

So, there is no longer a space of distances, we can only compare

distances to a same point.

Definition 1 A C-minimal structure M is a C-set with additional

structure in which every definable subset is a Boolean combina-

tion of open or closed balls, more exactly of their generaliza-

tions in the framework of C-relations, cones and 0-level sets.

Moreover, this must remain true in any structure N elementary

equivalent to M.



Theorem: Let M be a C-minimal structure which is dense, de-

finably complete, geometric and non-trivial. Suppose moreover

that in the underlying tree of M there is no definable bijection

between a bounded interval and an unbounded one (“NoBij”

condition). Then there is an infinite group definable in M.



Nice family of fonctions

Definition 2 Let V ⊆ M be a cone and F = {fu : u ∈ U} a

definable family of definable functions from V to M , indexed by a

cone U ⊆M . The family F is said to be a nice family of functions

if there is an element e ∈ V with the following properties:

1. All the fu are C-automorphisms of the cone V .

2. For every u ∈ U , we have fu(e) = e.

3. The property (∗):

(∗)


For any fixed x ∈ V \ {e}, the function

ϕF ,x : U −→ V
u 7−→ fu(x)

is a C-isomorphism from U onto some subcone of V .



Then one (and only one) of the following situations occurs:

(1) I(x) ⊆ T (M) is a branch with leaf of T (M): thus x ∈M (its
type over M is realized).

(2) I(x) ⊆ T (M) is a branch of T (M) without maximal element.
We say x is limit over M .

(3) I(x) ⊆ T (M) has a maximal element µx ∈ T (M) \M , x is
called residual over M .

(4) I(x) has a maximal element µx 6∈ T (M), x is called valua-
tional over M . Moreover
- if I(x) ∩ T (M) = ∅ we say x is of type −∞.
- otherwise take y ∈ M such that µx = x ∧ y. Then µx may
determine a proper cut on Br(y) ∩ T (M) or not, in which case
it is either of type α− or α+ for some α ∈ T (M). Note that this
case partition does not depend on y.



Proposition 1 If ψg is defined on a neighborhood of e and is

definable, the type ψg(e−) is one of the following:

(1) realized by an element of U

(2) α− for some α ∈ T (U)

(3) type at the infinity of some cone of U .

If (NoBij) holds only (1) and (2) with α an element of U are

possible.



Definition 3 We say g is derivable if ψg is defined on a neigh-

borhood of e and ψg(e−) is either realized in U or of type n− for

a leaf n of T (U), in other words if ψg(x) has a limit in U when x

tends to e. This limit u ∈ U is called the derivative of g (at e)

relatively to the family F. The function fu is called the tangent

to g in F and we write fu ∼F g, or just fu ∼ g if there is no

confusion on F.

Corollary 2 If (NoBij) holds then, g is derivable iff ψg is defined

on some neighborhood of e.



A derivability criterion for composed and inverse functions

Proposition 3 In Propostion ?? the family may be chosen with

the following properties:

- containing the identity,

- non-dilating.
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Birkhäuser Boston, Boston (2006), 261-405.

E. Hrushovski and A. Pillay, Groups definable in local fields and
pseudo-finite fields, Israel Journal of Math. 85 (1994), 203-262.

E. Hrushovski and B. Zilber, Zariski geometries, J. Amer. Math.
Soc. 9 (1996), 1–56.

F. Maalouf, Construction d’un groupe dans les structures C-
minimales J. Symbolic Logic 73 (2008), 957–968.

F. Maalouf, Type-definable groups in C-minimal structures Comptes
Rendus de l’Académie des Sciences - Mathématiques, 348 (2010):
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