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C-sets can be understood as reducts of ultrametric spaces: if the
distance is d, we keep only the information given by the ternary
relation

Clz,y,2) <= d(z,y) =d(z,2) > d(y,2).

So, there is no longer a space of distances, we can only compare
distances to a same point.

Definition 1 A C-minimal structure M is a C-set with additional
structure in which every definable subset is a Boolean combina-
tion of open or closed balls, more exactly of their generaliza-
tions in the framework of C-relations, cones and O-level sets.
Moreover, this must remain true in any structure N elementary
equivalent to M.



Theorem: Let M be a C-minimal structure which is dense, de-
finably complete, geometric and non-trivial. Suppose moreover
that in the underlying tree of M there is no definable bijection
between a bounded interval and an unbounded one (“NoBij”
condition). Then there is an infinite group definable in M.



Nice family of fonctions

Definition 2 Let V C M be a cone and F = {fy : u € U} a
definable family of definable functions from V to M, indexed by a
coneU C M. The family F is said to be a nice family of functions
if there is an element e € V with the following properties:

1. All the f, are C-automorphisms of the cone V.

2. For every uw € U, we have fy(e) = e.

3. The property (x):

( For any fixed x € V' \ {e}, the function
CF ¢ - U— V
%) < ;
is a C-isomorphism from U onto some subcone of V.

\



Then one (and only one) of the following situations occurs:
(1) I(x) CT(M) is a branch with leaf of T(M): thus z € M (its
type over M is realized).

(2) I(x) CT(M) is a branch of T'(M) without maximal element.
We say x is limit over M .

(3) I(x) € T(M) has a maximal element pu, € T(M) \ M, x is
called residual over M.

(4) I(x) has a maximal element u, € T(M), z is called valua-
tional over M . Moreover

-if I(x)NT(M) =0 we say z is of type —oc.

- otherwise take y € M such that u; = = Ay. Then u; may
determine a proper cut on Br(y) NT(M) or not, in which case
it is either of type a— or a™ for some « € T(M). Note that this
case partition does not depend on y.



Proposition 1 If ¢4 is defined on a neighborhood of e and is
definable, the type 14(e™) is one of the following:

(1) realized by an element of U

(2) a— for some o € T(U)

(3) type at the infinity of some cone of U.

If (NoBij) holds only (1) and (2) with o an element of U are
possible.



Definition 3 We say g is derivable if ¢4 is defined on a neigh-
borhood of e and y4(e™) is either realized in U or of type n~ for
a leaf n of T(U), in other words if 14(x) has a limit in U when x
tends to e. This limit w € U is called the derivative of g (at e)
relatively to the family F. The function f, is called the tangent
to g in F and we write f, ~r g, or just fi,, ~ g if there is no
confusion on F.

Corollary 2 If (NoBij) holds then, g is derivable iff ¢4 is defined
on some neighborhood of e.



A derivability criterion for composed and inverse functions

Proposition 3 In Propostion ?7? the family may be chosen with
the following properties:

- containing the identity,

- non-dilating.
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