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Why NIP Noetherian domains?

NIP

A theory T with monster model M has the independence property (IP) if
there is an indiscernible sequence a1, a2, . . . and definable set D with

ai ∈ D ⇐⇒ i ≡ 1 (mod 2).

Otherwise, T is NIP.
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Why NIP Noetherian domains?

IP and “independence”
T has the IP if and only if there is an infinite family of uniformly definable
sets

X1,X2,X3, . . . ⊆ M

which is “independent”, in the sense that it freely generates a boolean
algebra.

X1

X3

X2
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Why NIP Noetherian domains?

Examples of NIP theories

Stable theories, such as ACF and SCF

O-minimal theories, such as RCF

Many henselian valued fields (Delon, . . . )
▶ ACVF, RCVF, pCF, C((t)), . . .
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Why NIP Noetherian domains?

Dp-rank

The dp-rank dp-rk(a/B) is the maximum∗ number of mutually
B-indiscernible sequences which can all fail to be aB-indiscernible.

If X is type-definable over B, then

dp-rk(X ) := sup
a∈X

dp-rk(a/B).

Dp-rank is a reasonable subadditive notion of dimension.

dp-rk(X ) ≤ dp-rk(Y ) if there is a definable injection X → Y .

dp-rk(X × Y ) = dp-rk(X ) + dp-rk(Y ).

. . .
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Why NIP Noetherian domains?

Dp-rank 2

Dp-rank ≥ 2 means there are
uniformly definable sets

X0,X1,X2, . . .

Y0,Y1,Y2, . . .

such that for every i , j < ω, there is
an ai ,j such that

ai ,j ∈ Xk ⇐⇒ k = i

ai ,j ∈ Yk ⇐⇒ k = j

X0 X1 X2

Y0

Y1

Y2

a0,0 a1,0 a2,0

a2,1a1,1a0,1

a0,2 a2,2a1,2

Will Johnson (Fudan University) Around NIP Noetherian domains May 30, 2023 7 / 36



Why NIP Noetherian domains?

NIP and dp-rank

Fact

T is NIP iff dp-rk(M) < ∞.

Definition

T is dp-minimal if dp-rk(M) = 1.

Theories like ACF, ACVF, pCF, and o-minimal theories like RCF are
dp-minimal.

Definition

T is dp-finite if dp-rk(M) ∈ {0, 1, 2, 3, . . .}.
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Why NIP Noetherian domains?

A natural question

In this talk, “ring” means “commutative unital ring.”

Question

Which rings are NIP?

Too hard!

Question

Which Noetherian rings are NIP?
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Why NIP Noetherian domains?

Dp-minimal Noetherian domains

Theorem (J)

The dp-minimal Noetherian domains are the elementary substructures of
the following:

Dp-minimal fields.

K [[t]] for dp-minimal K with char(K ) = 0.

Finite-index subrings of OK for finite extensions K/Qp.

Dp-minimal domains are unclassified, but see (d’Elbée-Halevi).
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Why NIP Noetherian domains?

NIP fields

NIP Noetherian domains include NIP fields, which are hard to classify.

Option 1: work in low dp-rank.

Option 2: assume the conjectures on NIP fields.
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Why NIP Noetherian domains?

Henselianity

Assume the conjectural classification of NIP fields (Anscombe-Jahnke).

Or, assume the henselianity conjecture: NIP valued fields are henselian.

Theorem (J)

Under the assumptions, any NIP Noetherian domain is a henselian local
ring.

I don’t know how to prove this for general NIP domains.
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Basic facts about NIP Noetherian rings

Section 2

Basic facts about NIP Noetherian rings
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Basic facts about NIP Noetherian rings

Prime ideals

Fact (Simon)

If R is an NIP ring, the poset of prime ideals has finite width.

Corollary

If R is an NIP Noetherian ring, then. . .

R is semilocal.

R has finitely many prime ideals.

R has Krull dimension ≤ 1.

Will Johnson (Fudan University) Around NIP Noetherian domains May 30, 2023 14 / 36



Basic facts about NIP Noetherian rings

Prime ideals

Fact (Simon)

If R is an NIP ring, the poset of prime ideals has finite width.

Corollary

If R is an NIP Noetherian ring, then. . .

R is semilocal.

R has finitely many prime ideals.

R has Krull dimension ≤ 1.

Will Johnson (Fudan University) Around NIP Noetherian domains May 30, 2023 14 / 36



Basic facts about NIP Noetherian rings

Prime ideals

Fact (Simon)

If R is an NIP ring, the poset of prime ideals has finite width.

Corollary

If R is an NIP Noetherian ring, then. . .

R is semilocal.

R has finitely many prime ideals.

R has Krull dimension ≤ 1.

Will Johnson (Fudan University) Around NIP Noetherian domains May 30, 2023 14 / 36



Basic facts about NIP Noetherian rings

Prime ideals

Fact (Simon)

If R is an NIP ring, the poset of prime ideals has finite width.

Corollary

If R is an NIP Noetherian ring, then. . .

R is semilocal.

R has finitely many prime ideals.

R has Krull dimension ≤ 1.

Will Johnson (Fudan University) Around NIP Noetherian domains May 30, 2023 14 / 36



Basic facts about NIP Noetherian rings

Breadth

Definition

A ring R has breadth br(R) ≤ k if for any a0, . . . , ak ∈ R, there is i with

(a0, a1, . . . , ak) = (a0, . . . , ai−1, ai+1, . . . , ak).

Example

A domain R has br(R) ≤ 1 iff R is a valuation ring.

Fact (basically Cohen)

If R is Noetherian, then br(R) < ∞ ⇐⇒ (R is semilocal and
dim(R) ≤ 1).

Corollary

If R is an NIP Noetherian ring, then br(R) < ∞.

Will Johnson (Fudan University) Around NIP Noetherian domains May 30, 2023 15 / 36



Basic facts about NIP Noetherian rings

Breadth

Definition

A ring R has breadth br(R) ≤ k if for any a0, . . . , ak ∈ R, there is i with

(a0, a1, . . . , ak) = (a0, . . . , ai−1, ai+1, . . . , ak).

Example

A domain R has br(R) ≤ 1 iff R is a valuation ring.

Fact (basically Cohen)

If R is Noetherian, then br(R) < ∞ ⇐⇒ (R is semilocal and
dim(R) ≤ 1).

Corollary

If R is an NIP Noetherian ring, then br(R) < ∞.

Will Johnson (Fudan University) Around NIP Noetherian domains May 30, 2023 15 / 36



Basic facts about NIP Noetherian rings

Breadth

Definition

A ring R has breadth br(R) ≤ k if for any a0, . . . , ak ∈ R, there is i with

(a0, a1, . . . , ak) = (a0, . . . , ai−1, ai+1, . . . , ak).

Example

A domain R has br(R) ≤ 1 iff R is a valuation ring.

Fact (basically Cohen)

If R is Noetherian, then br(R) < ∞ ⇐⇒ (R is semilocal and
dim(R) ≤ 1).

Corollary

If R is an NIP Noetherian ring, then br(R) < ∞.

Will Johnson (Fudan University) Around NIP Noetherian domains May 30, 2023 15 / 36



Basic facts about NIP Noetherian rings

Breadth

Definition

A ring R has breadth br(R) ≤ k if for any a0, . . . , ak ∈ R, there is i with

(a0, a1, . . . , ak) = (a0, . . . , ai−1, ai+1, . . . , ak).

Example

A domain R has br(R) ≤ 1 iff R is a valuation ring.

Fact (basically Cohen)

If R is Noetherian, then br(R) < ∞ ⇐⇒ (R is semilocal and
dim(R) ≤ 1).

Corollary

If R is an NIP Noetherian ring, then br(R) < ∞.

Will Johnson (Fudan University) Around NIP Noetherian domains May 30, 2023 15 / 36



Basic facts about NIP Noetherian rings

Finite breadth

Unlike Noetherianity, the condition br(R) ≤ k is elementary.

Lemma

If br(R) < ∞, then. . .

Every f.g. ideal is generated by k generators.

Every ideal is externally definable.
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Basic facts about NIP Noetherian rings

Overrings

Let R be a domain. An overring is a ring A with R ⊆ A ⊆ Frac(R).

Fact

If K = Frac(R), then R and K have the same breadth as R-modules.

Corollary

Suppose R has finite breadth.

Any R-submodule of K is externally definable.

Any overring of R is externally definable.

Externally definable rings are still NIP! (by a theorem of Shelah)
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Basic facts about NIP Noetherian rings

Overrings

Let R be a Noetherian NIP domain.

Any localization S−1R is externally definable.

Any valuation overring O ⊇ R is externally definable.

These rings are also Noetherian by the Krull-Akizuki theorem.

Fact (Kaplan-Scanlon-Wagner)

If O is an NIP discrete valuation ring, then Frac(O) has characteristic zero.

Theorem (J)

If R is an NIP Noetherian domain and R ̸= Frac(R), then Frac(R) has
characteristic zero.
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Basic facts about NIP Noetherian rings

The number of maximal ideals

Conjecture

If O1,O2 are two valuation rings on K and (K ,O1,O2) is NIP, then
O1 ⊆ O2 or O2 ⊆ O1.

This is a form of the henselianity conjecture on NIP valued fields.

It holds in the dp-finite case.

Theorem (J)

Let R be an NIP Noetherian domain. Suppose dp-rk(R) < ℵ0 or the
henselianity conjecture holds.

1 R is a local ring.

2 Spec(R) is linearly ordered.

3 The integral closure R̃ is a henselian valuation ring.
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Basic facts about NIP Noetherian rings

Henselianity again

Theorem (J)

Let R be a NIP Noetherian ring. Suppose dp-rk(R) < ℵ0 or the
henselianity conjecture holds.

1 R is a finite product of Henselian local rings.

2 If R is a domain, then R is a Henselian local ring.

Conjecture (Generalized henselianity conjecture)

This holds for any NIP ring R.

True in these cases:

Positive characteristic.

Finite dp-rank.
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Positive characteristic.

Finite dp-rank.
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Dp-finite Noetherian domains

Section 3

Dp-finite Noetherian domains
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Dp-finite Noetherian domains

Dp-finite fields and valued fields

Theorem

A valued field (K , v) is dp-finite iff the following conditions hold:

1 v is henselian and defectless.

2 The value group vK and residue field Kv are dp-finite.

3 If Kv is finite and vK is non-trivial, then char(K ) = 0 and the interval
[−v(p), v(p)] ⊆ vK is finite.

4 If Kv is infinite with characteristic p > 0, then the interval
[−v(p), v(p)] ⊆ vK is p-divisible.

Theorem (J)

A field K is dp-finite iff. . .

Roughly speaking, the upper theorem generates all dp-finite fields, starting
from ACF and RCF.
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Dp-finite Noetherian domains

Dp-finite DVRs

Corollary

A DVR O is dp-finite iff it is elementarily equivalent to one of the
following:

K [[t]], where K is dp-finite and char(K ) = 0.

OK , where K is a finite extension of Qp.
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Dp-finite Noetherian domains

A trichotomy

Theorem (J)

Let R be a dp-finite Noetherian domain and O be its integral closure.
Then one of three things happens:

R is a field.

R and O have residue characteristic 0, and O ≡ K [[t]] for some
dp-finite field K of characteristic 0.

R and O have finite residue fields, and O ≡ OK for some finite
extension K/Qp.
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Dp-finite Noetherian domains

The R-adic topology

Suppose R is a semilocal domain and K = Frac(R) ̸= R.

Fact

R induces a field topology on K.

The family {aR : a ∈ K×} is a neighborhood basis of 0.

The family of non-zero ideals in R is a neighborhod basis of 0.

When R is a valuation ring, this is the valuation topology.
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Dp-finite Noetherian domains

The lucky case

Let R be a dp-finite Noetherian domain with R ̸= Frac(R).

Theorem(?)

If R induces a V-topology on Frac(R), then one of the following holds, up
to elementary equivalence:

1 R is a finite-index subring of OK for some finite extension K/Qp.

2 R is “something like”

R+ tR+ t2R+ t3C[[t]].

So K [[t]] ⊆ R ⊆ L[[t]] and dimK L[[t]]/R < ∞, where K is dp-finite
and L/K is a finite extension.
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Dp-finite Noetherian domains

The dp-minimal case

Fact (J)

If (K ,+, ·, . . .) is dp-minimal and not strongly minimal, then there is a
unique definable field topology, and it’s a V-topology.

Fact

If K = Frac(R), then (R,+, ·) and (K ,R,+, ·) have the same dp-rank.

Corollary

If R is a dp-minimal domain, then the R-adic topology on Frac(R) is a
V-topology.
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Dp-finite Noetherian domains

The dp-minimal case

Theorem (J)

The dp-minimal Noetherian domains are the elementary substructures of
the following:

Dp-minimal fields.

K [[t]] for dp-minimal K with char(K ) = 0.

Finite-index subrings of OK for finite extensions K/Qp.

By the way. . .

Fact (d’Elbée-Halevi)

If R is a dp-minimal integral domain with infinite residue field, then R is a
valuation ring.
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Prospects for dp-rank 2

Section 4

Prospects for dp-rank 2
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Prospects for dp-rank 2

A mysterious example

Let T be the model companion of p-adically closed fields with a derivation

T is NIP (Guzy-Point?)

Qp can be expanded to a model (Qp, ∂) |= T .

Let R = {x ∈ Zp : ∂(x) ∈ Zp}.
R is a Noetherian NIP domain with Frac(R) = Qp.

The R-adic topology on Qp is not a V-topology.

R isn’t “N-1”: its integral closure Zp isn’t finite over R.
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Prospects for dp-rank 2

A mysterious example

Is dp-rk(R) ≤ 2?

Yes, if you replace pCF with ACVF. . .

. . . losing Noetherianity.

. . . (And the proof is terrible!)
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Prospects for dp-rank 2

Differential valued fields
(K , v , ∂) isn’t even strongly dependent.

Instead, consider (K , v , ∂∗), where ∂∗ is the truncated derivative

K
∂→ K → K/O

This reduct defines R = {x ∈ O : ∂x ∈ O}.
(K , v , ∂∗) knows more about ∂ than it claims:

∂∗(x2) = 2x∂∗x︸ ︷︷ ︸
more precision?!

This messes up QE.

Instead, consider (K , v , ∂ log∗), where ∂ log∗ is the truncated log
derivative

K
∂ log→ K → K/O.

This has QE, and dp-rank 2.
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Prospects for dp-rank 2

Some vague conjectures

Conjecture

There are non-excellent Noetherian domains of dp-rank 2 coming from
differential valued fields.

Conjecture

If R is a Noetherian domain of dp-rank 2 and the R-adic topology isn’t a
V-topology, then R arises from this construction.
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Prospects for dp-rank 2

Some evidence

Fact (J)

Any definable field topology on a dp-minimal field is a V-topology.

Theorem (J)

Let K be a highly saturated field of dp-rank 2, and let τ be a definable
field topology on K. Then τ is a V-topology or there is a valuation ring
O ⊆ K and a derivation ∂ : K → K such that τ is the R-adic topology, for

R = {x ∈ O : ∂x ∈ O}.
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Questions?
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