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Qp vs Fp((t))
Two methods of comparing them

First method: p →∞.

Theorem (Ax-Kochen/Ershov ’65)

Let φ be a sentence in the language of rings. Then there exists
N = N(φ) ∈ N such that

φ holds in Qp ⇐⇒ φ holds in Fp((t))

for all p ≥ N.

Application: Artin conjectured that Qp is C2.
This was disproved by Terjanian ’66, ’80. Nevertheless:

Corollary (Ax-Kochen ’65)

Fix d ∈ N. Then Qp is C2(d) for p >> 0.

Remark:
Later, the Ax-Kochen/Ershov transfer principle between Qp and
Fp((t)) was vastly generalized in a motivic framework.
(Denef-Loeser ’01, Cluckers-Loeser ’08, ...)



Qp vs Fp((t))
Two methods of comparing them: K vs K [

Second method: e →∞.
”Approximation des corps valués complets de caractéristique p par
ceux de caractéristique 0.” (Krasner ’56)
This works especially well by considering higher and higher wildly
ramified extensions and passing to the limit.
For instance: Take Qp(p1/p

∞
) and Fp((t))(t1/p

∞
).

Theorem (Fontaine-Wintenberger ’79)

GQp(p1/p
∞

)
∼= GFp((t))(t1/p

∞
).

This was generalized within the framework of perfectoid fields.
Given a perfectoid field K one defines its tilt K [.
Slogan: K and K [ are very similar.

Theorem (Scholze ’12 and Kedlaya-Liu ’15)

GK
∼= GK [

Fact: Scholze also obtains an appropriate geometric generalization
for perfectoid spaces.



Motivating question (K vs K [)

Fix a perfectoid field K with tilt K [.
Question: (M. Morrow, Luminy ’18)
How are K and K [ related model-theoretically? More precisely:
(i) To what extent does Th(K [) determine Th(K )?
(ii) How close are K and K [ to being elementary equivalent?
Answers:
(1) K and K [ are bi-interpretable in continuous logic.
(Rideau-Scanlon-Simon)
(!) Their interpretation of K in K [ requires parameters for the
Witt vector coordinates of ξK ∈W (OK [).
(2) K is ”in practice” decidable relative to K [. (K. ’21)
(Need that ξK ∈W (OK [) is a computable Witt vector)
(3) By passing to an elementary extension of K , we find a
well-behaved valuation on it, whose residue field is an elementary
extension of K [. (joint with F. Jahnke)

Goal of this talk: Explain (3).
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Main theorem
Beyond the Fontaine-Wintenberger theorem

Summary: By passing to an elementary extension of K , we find a
well-behaved valuation on it, whose residue field is an elementary
extension of K [.

Theorem (Jahnke, K. ’23)

I (K , v) perfectoid field and $ ∈ m\{0}.
I U a non-principal ultrafilter on N.

I (KU , vU) the corresponding ultrapower.

Let w be the coarsest coarsening of vU such that w$ > 0. Then:

(I) Every finite extension of (KU ,w) is unramified.

(II) There is an elementary embedding from (K [, v [) to (kw , v).

Moreover, the isomorphism GKU
∼= Gkw restricts to GK

∼= GK [ .

Moral:
One eliminates all difficulties related to the defect at the expense
of making the residue field more complicated.



The main theorem facilitates the transfer of first-order information
between K and K [. For instance:

Example

1. Using (I) and (II), we get that

GK ≡ GKU
∼= Gkw ≡ GK [

2. Regarding the property of being defectless: (Draw picture.)

(K , v) is defectless ⇐⇒ (KU , vU) is defectless
!⇐⇒

(kw , v) is defectless ⇐⇒ (K [, v [) is defectless

3. Regarding the property of being Ci :

K is Ci ⇐⇒ KU is Ci
!

=⇒ kw is Ci ⇐⇒ K [ is Ci

Problem: Suppose K [ is Ci . Is K also Ci? (i = 1?)

4. Existence of rational points in rationally connected varieties.
(In progress)



Goal for the rest of the talk:
Explain (I) and (II) of the main theorem.
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Part I of the main theorem
A model-theoretic glimpse into almost mathematics

Recall the statement:

Theorem (Part I of the main theorem)

I (K , v) perfectoid field and $ ∈ m\{0}.
I (KU , vU) a non-principal ultrapower.

I w=”the coarsest coarsening of vU s.t. w$ > 0”.

Then every finite extension of KU is unramified with respect to w .

This is a non-standard version of the almost purity theorem:

Theorem (Tate ’67/Gabber-Ramero ’03)

Let K be a perfectoid field. Then every finite extension of K is
almost unramified. More precisely, if K ′/K is a finite extension
then OK ′/OK is almost finite étale.

More general versions of almost purity exist.
(Faltings ’02, Scholze ’12)



Part I of the main theorem
A model-theoretic glimpse into almost mathematics

Goals: (for the next 15 minutes)
(1) Explain the key ideas in almost mathematics.
(2) Explain why Part I is a non-standard version of almost purity.
(3) Make precise the connection between our model-theoretic
framework and almost mathematics.

Disclaimer:
This will only be a small glimpse into a highly technical subject.

I will try to motivate the key ideas without getting bogged down
with too many technical details.



Almost mathematics (d’après Faltings, Gabber-Ramero)
An introduction

Central notion: Almost étale extension. (Faltings ’02)
Let us explain this with an example:

Example

I Let K be the p-adic completion of Qp(p1/p
∞

). (p 6= 2)

I K ′ = K (p1/2). (totally ramified quadratic extension)

The extension OK ′/OK is close to being étale. To see this, let us
have a look at what happens at a finite level:

1. Consider the local fields Kn = Qp(p1/p
n
) and K ′n = Kn(p1/2).

2. One can show that OK ′
n

= OKn [p1/2p
n
].

3. Computing the module of Kähler differentials, we see that

p1/p
n · ΩOK ′

n
/OKn

= 0

4. Passing to the limit, we get m · ΩOK ′/OK
= 0.

5. In almost mathematics, such a module is treated as zero.



Almost mathematics (d’après Faltings, Gabber-Ramero)
An introduction

Main idea:
Build a version of ring theory where m-torsion is ignored.
Basic setup:

I K a perfectoid field, OK its valuation ring, m the maximal
ideal.

I OK -Mod=”the category of OK -modules”

The arena of almost mathematics is the Serre quotient

Oa
K -Mod = OK -Mod/(m− torsion modules)

called the category of almost modules.
Consider (−)a : OK -Mod→ Oa

K -Mod : M 7→ Ma.
It is useful to think of Ma as a slightly generic fiber of M.
(But beware that this is not literally true.)

The category Oa
K -Mod is a tensor abelian category.

One can start defining almost analogues of notions in ring theory
(e.g., almost algebras, flatness, projectivity(!), étaleness)



Almost mathematics (a paradigm shift)
What does this have to do with model theory?

Example (revisited)

I Let K be the p-adic completion of Qp(p1/p
∞

). (p 6= 2)

I K ′ = K (p1/2).

I Consider the non-principal ultrapower KU and the coarsest
coarsenings w of vU with wp > 0 (similarly for K ′).

1. We can also write K ′ = K (p1/2p
n
).

2. Thus, K ′U = KU(π1/2) where π = ulim p1/p
n
. ( Loś)

3. Ow ′ = Ow [π1/2].

4. Ow ′/Ow is an (honest!) étale extension.

Moral:
The almost étale extension OK ′/OK transformed into an honest
étale extension Ow ′/Ow .
This hints at a dictionary between the two frameworks.



Almost mathematics
A dictionary between the two frameworks

Write S ⊆ OvU for the set of elements of infinitesimal valuation.

Theorem (Jahnke, K. ’23)

We have a faithful exact monoidal functor

S−1(−)U : Oa
K -Mod→ Ow -Mod : Ma → S−1MU

Suppose Ma is uniformly almost finitely generated over Oa
K . Then:

Ma is flat (resp. almost projective, etc.) over Oa
K if and only if

S−1MU is flat (resp. projective, etc.) over Ow .

cf: (Gabber’s construction)
Given an OK -module M, let M� = MN/M(N) and S ⊆ ON

K be the
set of sequences (sn)n∈ω with vsn → 0. Then

S−1(−)� : Oa
K -Mod→ O�K -Mod : M 7→ S−1M�

is a faithful exact functor which preserves and reflects flatness.
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Part II of the main theorem
K [ as a residue field of K in disguise

Theorem (Part II of the main theorem)

Let (K , v) be a perfectoid field and (KU , vU) be a non-principal
ultrapower. Let w be the coarsest coarsening of vU such that
w$ > 0. Then (K [, v [) embeds elementarily in (kw , v).

1. Constructing ι : (K [, v [)→ (kw , v) requires a bit of algebraic
yoga but it is not difficult.

2. Once ι has been constructed, it is also not hard to check that
ι induces an elementary embedding of rings

ι : OK [/(t)→ Ov/(ι(t))

(It is essentially a diagonal embedding into an ultrapower.)

3. But why is ι : (K [, v [)→ (kw , v) also elementary?

4. One needs an Ax-Kochen/Ershov principle down to O/$.
But for what kind of valued fields?

Since kw is not ”perfectoid”, we need to work with a larger class C
of valued fields. It is desirable that C be an elementary class.



An elementary class of ”almost tame” fields

Definition
Fix a prime p. Let C be the class of valued fields (K , v) together
with a distinguished $ ∈ mv\{0}, such that:

1. (K , v) is a henselian valued field of residue characteristic p.

2. The ring Ov/(p) is semi-perfect.

3. The valuation ring Ov [$−1] is algebraically maximal.

Structures in C will naturally be viewed as Lval($)-structures.

Facts:

1. Perfectoid fields are in C. (Note that OK [$−1] = K .)

2. C is an elementary class in Lval($). (tricky!)
(Warning: Axiom 3 is not elementary by itself.)

3. There is an Ax-Kochen/Ershov principle for valued fields in C
down to O/$.



Part II of the main theorem
K [ as a residue field of K in disguise

Theorem (Jahnke, K. ’23)

Let (K , v) ⊆ (K ′, v ′) be two henselian valued fields of residue
characteristic p > 0 such that:

I Ov/(p) and Ov ′/(p) is semi-perfect.

I There is $ ∈ mv such that Ov [$−1] (resp. Ov ′ [$−1]) is
algebraically maximal.

Then the following are equivalent:

1. (K , v) � (K ′, v ′) in Lval.

2. Ov/($) � Ov ′/($) in Lrings and Γv � Γv ′ in Loag.

If Γv and Γv ′ are regularly dense, then the value group condition in
(2) can be omitted.

Key ingredient: The model theory of tame fields. (Kuhlmann ’16)

This applies to show that ι : (K [, v [)→ (kw , v) is elementary.
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Other applications of the AKE principle
Model-theoretic phenomena in positive characteristic

This Ax-Kochen/Ershov principle has several other applications.

For instance, recall the following open problem:

Problem
Is Fp(t)h an elementary substructure of Fp((t))?

We prove its ”perfected” variant:

Corollary (Jahnke, K. ’23)

The perfect hull of Fp(t)h is an elementary substructure of the
perfect hull of Fp((t)).

Remark:
Unfortunately, this does not seem to shed any light on the theory
of the perfect hull of Fp((t)).



A perfectoid AKE principle

We show that tilting respects elementary equivalence over a
perfectoid base:

Corollary (Jahnke, K. ’23)

Let K1,K2 be two perfectoid fields extending a perfectoid field K .
Then:

K1 ≡K K2 if and only if K [
1 ≡K [ K [

2

In particular, we have that K1 � K2 if and only if K [
1 � K [

2

Remark:
Without fixing a base, the reverse direction fails in general.

(e.g., K1 = ̂Qp(p1/p∞) and K2 = ̂Qp(ζp∞).)

Thank you for your attention!
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