Beyond the Fontaine-Wintenberger theorem

Konstantinos Kartas (IMJ-PRG/CNRS)

CIRM Luminy '23

Joint work with Franziska Jahnke.

Motivation: \mathbb{Q}_p vs $\mathbb{F}_p((t))$

Main theorem

Part I/Almost purity

Part II of the main theorem

 \mathbb{Q}_p vs $\mathbb{F}_p((t))$

Two methods of comparing them

First method: $p \to \infty$.

Theorem (Ax-Kochen/Ershov '65)

Let ϕ be a sentence in the language of rings. Then there exists $N = N(\phi) \in \mathbb{N}$ such that

 ϕ holds in $\mathbb{Q}_p \iff \phi$ holds in $\mathbb{F}_p((t))$

for all $p \ge N$.

Application: Artin conjectured that \mathbb{Q}_p is C_2 . This was disproved by Terjanian '66, '80. Nevertheless:

Corollary (Ax-Kochen '65)

Fix $d \in \mathbb{N}$. Then \mathbb{Q}_p is $C_2(d)$ for $p \gg 0$.

Remark:

Later, the Ax-Kochen/Ershov transfer principle between \mathbb{Q}_p and $\mathbb{F}_p((t))$ was vastly generalized in a motivic framework. (Denef-Loeser '01, Cluckers-Loeser '08, ...)

\mathbb{Q}_p vs $\mathbb{F}_p((t))$

Two methods of comparing them: K vs K^{\flat}

Second method: $e \to \infty$.

"Approximation des corps valués complets de caractéristique p par ceux de caractéristique 0." (Krasner '56)

This works especially well by considering higher and higher *wildly* ramified extensions and passing to the limit.

For instance: Take $\mathbb{Q}_p(p^{1/p^{\infty}})$ and $\mathbb{F}_p((t))(t^{1/p^{\infty}})$.

Theorem (Fontaine-Wintenberger '79)

$$G_{\mathbb{Q}_p(p^{1/p^{\infty}})} \cong G_{\mathbb{F}_p((t))(t^{1/p^{\infty}})}.$$

This was generalized within the framework of *perfectoid fields*. Given a perfectoid field K one defines its *tilt* K^{\flat} . **Slogan:** K and K^{\flat} are very similar.

Theorem (Scholze '12 and Kedlaya-Liu '15)

 $G_K \cong G_{K^\flat}$

Fact: Scholze also obtains an appropriate geometric generalization for perfectoid spaces.

Motivating question (K vs K^{\flat})

Fix a perfectoid field K with tilt K^{\flat} .

Question: (M. Morrow, Luminy '18)

How are K and K^{\flat} related model-theoretically? More precisely:

(i) To what extent does $Th(K^{\flat})$ determine Th(K)?

(ii) How close are K and K^{\flat} to being elementary equivalent? Answers:

(1) K and K^{\flat} are bi-interpretable in continuous logic.

(Rideau-Scanlon-Simon)

(!) Their interpretation of K in K^{\flat} requires *parameters* for the Witt vector coordinates of $\xi_K \in W(\mathcal{O}_{K^{\flat}})$.

(2) K is "in practice" decidable relative to K^{\flat} . (K. '21) (Need that $\xi_{K} \in W(\mathcal{O}_{K^{\flat}})$ is a *computable* Witt vector) (3) By passing to an elementary extension of K, we find a well-behaved valuation on it, whose residue field is an elementary extension of K^{\flat} . (joint with F. Jahnke)

Goal of this talk: Explain (3).

Motivation: \mathbb{Q}_p vs $\mathbb{F}_p((t))$

Main theorem

Part I/Almost purity

Part II of the main theorem

Main theorem

Beyond the Fontaine-Wintenberger theorem

Summary: By passing to an elementary extension of K, we find a well-behaved valuation on it, whose residue field is an elementary extension of K^{\flat} .

Theorem (Jahnke, K. '23)

- (K, v) perfectoid field and $\varpi \in \mathfrak{m} \setminus \{0\}$.
- ► U a non-principal ultrafilter on N.
- (K_U, v_U) the corresponding ultrapower.

Let w be the coarsest coarsening of v_U such that $w\varpi > 0$. Then:

(1) Every finite extension of (K_U, w) is unramified.

(II) There is an elementary embedding from (K^{\flat}, v^{\flat}) to (k_w, \overline{v}) . Moreover, the isomorphism $G_{K_U} \cong G_{k_w}$ restricts to $G_K \cong G_{K^{\flat}}$. **Moral:**

One eliminates all difficulties related to the defect at the expense of making the residue field more complicated.

The main theorem facilitates the transfer of first-order information between K and K^{\flat} . For instance:

Example

1. Using (I) and (II), we get that

$$G_K \equiv G_{K_U} \cong G_{k_w} \equiv G_{K^\flat}$$

2. Regarding the property of being defectless: (Draw picture.)

(K, v) is defectless $\iff (K_U, v_U)$ is defectless $\stackrel{!}{\iff}$

 (k_w, \overline{v}) is defectless $\iff (K^{\flat}, v^{\flat})$ is defectless

3. Regarding the property of being C_i :

$$K$$
 is $C_i \iff K_U$ is $C_i \stackrel{!}{\Longrightarrow} k_w$ is $C_i \iff K^{\flat}$ is C_i

Problem: Suppose K^{\flat} is C_i . Is K also C_i ? (i = 1?)

 Existence of rational points in rationally connected varieties. (In progress) **Goal for the rest of the talk:** Explain (I) and (II) of the main theorem.

Motivation: \mathbb{Q}_p vs $\mathbb{F}_p((t))$

Main theorem

Part I/Almost purity

Part II of the main theorem

Part I of the main theorem

A model-theoretic glimpse into almost mathematics

Recall the statement:

Theorem (Part I of the main theorem)

- (K, v) perfectoid field and $\varpi \in \mathfrak{m} \setminus \{0\}$.
- ► (K_U, v_U) a non-principal ultrapower.
- w = "the coarsest coarsening of v_U s.t. $w \varpi > 0$ ".

Then every finite extension of K_U is unramified with respect to w. This is a non-standard version of the *almost purity theorem*:

Theorem (Tate '67/Gabber-Ramero '03)

Let K be a perfectoid field. Then every finite extension of K is almost unramified. More precisely, if K'/K is a finite extension then $\mathcal{O}_{K'}/\mathcal{O}_K$ is almost finite étale.

More general versions of almost purity exist. (Faltings '02, Scholze '12)

Part I of the main theorem

A model-theoretic glimpse into almost mathematics

Goals: (for the next 15 minutes)
(1) Explain the key ideas in almost mathematics.
(2) Explain why Part I is a non-standard version of almost purity.
(3) Make precise the connection between our model-theoretic framework and almost mathematics.

Disclaimer:

This will only be a small glimpse into a highly technical subject.

I will try to motivate the key ideas without getting bogged down with too many technical details.

Almost mathematics (d'après Faltings, Gabber-Ramero)

An introduction

Central notion: Almost étale extension. (Faltings '02) Let us explain this with an example:

Example

- Let K be the p-adic completion of $\mathbb{Q}_p(p^{1/p^{\infty}})$. $(p \neq 2)$
- $K' = K(p^{1/2})$. (totally ramified quadratic extension)

The extension $\mathcal{O}_{K'}/\mathcal{O}_{K}$ is close to being étale. To see this, let us have a look at what happens at a finite level:

- 1. Consider the local fields $K_n = \mathbb{Q}_p(p^{1/p^n})$ and $K'_n = K_n(p^{1/2})$.
- 2. One can show that $\mathcal{O}_{K'_n} = \mathcal{O}_{K_n}[p^{1/2p^n}].$
- 3. Computing the module of Kähler differentials, we see that

$$p^{1/p^n} \cdot \Omega_{\mathcal{O}_{K'_n}/\mathcal{O}_{K_n}} = 0$$

- 4. Passing to the limit, we get $\mathfrak{m} \cdot \Omega_{\mathcal{O}_{K'}/\mathcal{O}_K} = 0$.
- 5. In almost mathematics, such a module is treated as zero.

Almost mathematics (d'après Faltings, Gabber-Ramero)

An introduction

Main idea:

Build a version of ring theory where m-torsion is ignored.

- Basic setup:
 - ► K a perfectoid field, O_K its valuation ring, m the maximal ideal.
 - ▶ O_K-Mod="the category of O_K-modules"

The arena of almost mathematics is the Serre quotient

 $\mathcal{O}_{\mathcal{K}}^{a}$ -Mod = $\mathcal{O}_{\mathcal{K}}$ -Mod/(\mathfrak{m} - torsion modules)

called the category of almost modules. Consider $(-)^a : \mathcal{O}_K$ -Mod $\rightarrow \mathcal{O}_K^a$ -Mod $: M \mapsto M^a$. It is useful to think of M^a as a slightly generic fiber of M. (But beware that this is not literally true.)

The category \mathcal{O}_{K}^{a} -Mod is a tensor abelian category. One can start defining almost analogues of notions in ring theory (e.g., almost algebras, flatness, projectivity(!), **étaleness**)

Almost mathematics (a paradigm shift)

What does this have to do with model theory?

Example (revisited)

- Let K be the p-adic completion of $\mathbb{Q}_p(p^{1/p^{\infty}})$. $(p \neq 2)$
- $K' = K(p^{1/2}).$
- ► Consider the non-principal ultrapower K_U and the coarsest coarsenings w of v_U with wp > 0 (similarly for K').
- 1. We can also write $K' = K(p^{1/2p^n})$.
- 2. Thus, $K'_U = K_U(\pi^{1/2})$ where $\pi = \text{ulim } p^{1/p^n}$. (Łoś)
- 3. $\mathcal{O}_{w'} = \mathcal{O}_w[\pi^{1/2}].$
- 4. $\mathcal{O}_{w'}/\mathcal{O}_w$ is an (honest!) étale extension.

Moral:

The almost étale extension $\mathcal{O}_{K'}/\mathcal{O}_{K}$ transformed into an honest étale extension $\mathcal{O}_{w'}/\mathcal{O}_{w}$. This hints at a dictionary between the two frameworks.

Almost mathematics

A dictionary between the two frameworks

Write $S \subseteq \mathcal{O}_{v_U}$ for the set of elements of infinitesimal valuation. Theorem (Jahnke, K. '23) We have a faithful exact monoidal functor

$$S^{-1}(-)_U:\mathcal{O}_K^{\mathsf{a}}\operatorname{\mathsf{-Mod}} o \mathcal{O}_w\operatorname{\mathsf{-Mod}}:M^{\mathsf{a}} o S^{-1}M_U$$

Suppose M^a is uniformly almost finitely generated over \mathcal{O}_K^a . Then: M^a is flat (resp. almost projective, etc.) over \mathcal{O}_K^a if and only if $S^{-1}M_U$ is flat (resp. projective, etc.) over \mathcal{O}_w .

cf: (Gabber's construction) Given an \mathcal{O}_K -module M, let $M^{\diamond} = M^{\mathbb{N}}/M^{(\mathbb{N})}$ and $S \subseteq \mathcal{O}_K^{\mathbb{N}}$ be the set of sequences $(s_n)_{n \in \omega}$ with $vs_n \to 0$. Then

$$S^{-1}(-)^{\diamond}: \mathcal{O}_{K}^{a}\operatorname{-Mod}
ightarrow \mathcal{O}_{K}^{\diamond}\operatorname{-Mod}: M \mapsto S^{-1}M^{\diamond}$$

is a faithful exact functor which preserves and reflects flatness.

Motivation: \mathbb{Q}_p vs $\mathbb{F}_p((t))$

Main theorem

Part I/Almost purity

Part II of the main theorem

Part II of the main theorem

 K^{\flat} as a residue field of K in disguise

Theorem (Part II of the main theorem)

Let (K, v) be a perfectoid field and (K_U, v_U) be a non-principal ultrapower. Let w be the coarsest coarsening of v_U such that $w\varpi > 0$. Then (K^{\flat}, v^{\flat}) embeds elementarily in (k_w, \overline{v}) .

- 1. Constructing $\iota : (K^{\flat}, v^{\flat}) \to (k_w, \overline{v})$ requires a bit of algebraic yoga but it is not difficult.
- Once ι has been constructed, it is also not hard to check that ι induces an *elementary embedding* of rings

 $\overline{\iota}:\mathcal{O}_{K^{\flat}}/(t)\to\mathcal{O}_{\overline{v}}/(\iota(t))$

(It is essentially a diagonal embedding into an ultrapower.)

- 3. But why is $\iota : (K^{\flat}, v^{\flat}) \to (k_w, \overline{v})$ also elementary?
- 4. One needs an Ax-Kochen/Ershov principle down to \mathcal{O}/ϖ . But for what kind of valued fields?

Since k_w is not "perfectoid", we need to work with a larger class C of valued fields. It is desirable that C be an elementary class.

An elementary class of "almost tame" fields

Definition

Fix a prime *p*. Let C be the class of valued fields (K, v) together with a distinguished $\varpi \in \mathfrak{m}_v \setminus \{0\}$, such that:

- 1. (K, v) is a henselian valued field of residue characteristic p.
- 2. The ring $\mathcal{O}_{v}/(p)$ is semi-perfect.
- 3. The valuation ring $\mathcal{O}_{\nu}[\varpi^{-1}]$ is algebraically maximal.

Structures in C will naturally be viewed as $L_{val}(\varpi)$ -structures.

Facts:

- 1. Perfectoid fields are in C. (Note that $\mathcal{O}_{\mathcal{K}}[\varpi^{-1}] = \mathcal{K}$.)
- 2. C is an elementary class in $L_{val}(\varpi)$. (tricky!) (Warning: Axiom 3 is not elementary by itself.)
- 3. There is an Ax-Kochen/Ershov principle for valued fields in ${\cal C}$ down to ${\cal O}/\varpi.$

Part II of the main theorem

 K^{\flat} as a residue field of K in disguise

Theorem (Jahnke, K. '23)

Let $(K, v) \subseteq (K', v')$ be two henselian valued fields of residue characteristic p > 0 such that:

- $\mathcal{O}_{v}/(p)$ and $\mathcal{O}_{v'}/(p)$ is semi-perfect.
- There is ∞ ∈ m_v such that O_v[∞⁻¹] (resp. O_{v'}[∞⁻¹]) is algebraically maximal.

Then the following are equivalent:

1. $(K, v) \preceq (K', v')$ in L_{val} .

2. $\mathcal{O}_{v}/(\varpi) \preceq \mathcal{O}_{v'}/(\varpi)$ in L_{rings} and $\Gamma_{v} \preceq \Gamma_{v'}$ in L_{oag} .

If Γ_v and $\Gamma_{v'}$ are regularly dense, then the value group condition in (2) can be omitted.

Key ingredient: The model theory of tame fields. (Kuhlmann '16)

This applies to show that $\iota : (K^{\flat}, v^{\flat}) \to (k_w, \overline{v})$ is elementary.

Motivation: \mathbb{Q}_p vs $\mathbb{F}_p((t))$

Main theorem

Part I/Almost purity

Part II of the main theorem

Other applications of the AKE principle

Model-theoretic phenomena in positive characteristic

This Ax-Kochen/Ershov principle has several other applications.

For instance, recall the following open problem:

Problem Is $\mathbb{F}_p(t)^h$ an elementary substructure of $\mathbb{F}_p((t))$? We prove its "perfected" variant:

Corollary (Jahnke, K. '23)

The perfect hull of $\mathbb{F}_p(t)^h$ is an elementary substructure of the perfect hull of $\mathbb{F}_p((t))$.

Remark:

Unfortunately, this does not seem to shed any light on the theory of the perfect hull of $\mathbb{F}_p((t))$.

A perfectoid AKE principle

We show that tilting respects elementary equivalence over a *perfectoid base:*

Corollary (Jahnke, K. '23)

Let K_1, K_2 be two perfectoid fields extending a perfectoid field K. Then:

$$K_1 \equiv_K K_2$$
 if and only if $K_1^{\flat} \equiv_{K^{\flat}} K_2^{\flat}$

In particular, we have that $K_1 \preceq K_2$ if and only if $K_1^{\flat} \preceq K_2^{\flat}$

Remark:

Without fixing a base, the reverse direction fails in general. (e.g., $K_1 = \mathbb{Q}_{p}(p^{1/p^{\infty}})$ and $K_2 = \mathbb{Q}_{p}(\zeta_{p^{\infty}})$.)

Thank you for your attention!