Definable convex and henselian valuations on ordered fields

Lothar Sebastian Krapp

Universität Konstanz, Fachbereich Mathematik und Statistik

01 June 2023

 ${\sf CIRM-Model\ theory\ of\ valued\ fields}$

Slides are available on:

 $\verb|www.krapp-handout.de|$

Joint with:

- S. KUHLMANN and G. LEHÉRICY: 'Ordered fields dense in their real closure and definable convex valuations', Forum Math. 33
 (2021) 953–972.
- S. KUHLMANN and G. LEHÉRICY: 'Strongly NIP almost real closed fields', MLQ Math. Log. Q. 67 (2021) 321–328.
- S. KUHLMANN and M. LINK: 'Definability of henselian valuations by conditions on the value group', to appear in *J. Symb. Log.*, 19 pp.
- P. DITTMANN, F. JAHNKE and S. KUHLMANN: 'Definable valuations on ordered fields', to appear in *Model Theory*, 17 pp.

- Motivation
- 2 Henselian valuations
- Convex valuations
- 4 Almost real closed fields

- Motivation
- 2 Henselian valuations
- Convex valuations
- 4 Almost real closed fields

Model theoretic setting

- first-order language of rings: $\mathcal{L}_{\rm r} = \{+,-,\cdot,0,1\}$ of ordered rings: $\mathcal{L}_{\rm or} = \{+,-,\cdot,0,1,<\}$
- throughout $K=(K,<)=(K,+,-,\cdot,0,1,<)$ denotes a (linearly) ordered field $F=(F,+,-,\cdot,0,1)$ denotes a field G=(G,+,-,0,<) denotes an ordered abelian group
- \mathcal{L}\text{-definability: with parameters}
 \mathcal{V}\text{-definability: without parameters}

Valuations theoretic setting

- valuation $v: F \to vF \cup \{\infty\}$, where the value group vF is an additive ordered abelian group
- valuation ring $\mathcal{O}_v = \{x \in F \mid v(x) \ge 0\}$ valuation ideal $\mathcal{M}_v = \{x \in F \mid v(x) > 0\}$
- residue field $Fv = \mathcal{O}_v/\mathcal{M}_v$ with elements $\overline{a} = a + \mathcal{M}_v$ for $a \in \mathcal{O}_v$

Expressive power

Is the language \mathcal{L}_{or} more expressive than \mathcal{L}_{r} in the context of ordered fields?

More specifically, are there subsets of K that are definable in the language \mathcal{L}_{or} but not in the language \mathcal{L}_r ?

Expressive power: positive cones

Is the language \mathcal{L}_{or} more expressive than \mathcal{L}_{r} in the context of ordered fields?

If < is already \mathcal{L}_r -definable, then the answer is no.

- O-minimal setting: if K is real closed, then the \mathcal{L}_r -formula $\exists y \ (y \neq 0 \land y \cdot y = x)$ defines $P_< = \{x \in K \mid 0 < x\}$.
- More generally: if there is some $n \in \mathbb{N}$ such that every non-negative element of K is a sum of n squares, then $P_{<}$ is \mathcal{L}_{r} -definable (e.g. euclidean fields).

Expressive power: positive cones

Is the language \mathcal{L}_{or} more expressive than \mathcal{L}_{r} in the context of ordered fields?

Generally ves. because sometimes < is not \mathcal{L}_r -definable:

Consider $K=\mathbb{Q}(t_1,t_2,\ldots)$ ordered by $\mathbb{Q}\ll t_1\ll t_2\ll\ldots$ Then for any \mathcal{L}_{r} -formula $\varphi(x_1, x_2, y_1, \dots, y_m)$ we have

$$K \models \varphi(t_{m+1}, t_{m+2}, t_1, \dots, t_m)$$
 if and only if $K \models \varphi(t_{m+2}, t_{m+1}, t_1, \dots, t_m)$.

Convex valuations

Definition

A valuation v on K is **convex** if its valuation ring \mathcal{O}_{v} is a convex subset of K, i.e. for any $a, b \in \mathcal{O}_V$ and any $c \in K$ with a < c < b also $c \in \mathcal{O}_V$.

- In the study of ordered valued fields, one is mostly interested in convex valuations.
- The set of convex valuation rings on K is linearly ordered by \subseteq .
- If v is a convex valuation on K, then Kv is linearly ordered by

$$\overline{a} < \overline{b} : \Leftrightarrow (a < b \land \overline{a} \neq \overline{b})$$

for any $a, b \in \mathcal{O}_{v}$.

Lemma (Knebusch, Wright, 1976)

Any henselian valuation on a field F is convex with respect to any linear ordering on F.

Henselian valuations

We denote by F((G)) the **field of generalised power series** with coefficients in F and exponents in G. We denote by v_{\min} the henselian valuation

$$F((G))^{\times} \to G, \quad \sum_{g \geq g_0} s_g t^g \mapsto g_0$$

(for $s_{g_0} \neq 0$).

The field K((G)) can be naturally ordered by $\sum_{g>g_0} s_g t^g > 0$ if and only if $s_{g_0} > 0$.

Theorem [Ax-Kochen-Ershov Principle] (Farré, 1993)

Let (K, v) be an ordered henselian valued field. Then

$$(K, +, -, \cdot, 0, 1, <, v) \equiv (Kv((vK)), +, -, \cdot, 0, 1, <, v_{min}).$$

Expressive power: convex valuations

Is the language \mathcal{L}_{or} more expressive than \mathcal{L}_{r} in the context of ordered fields and convex valuations?

Definition

A valuation v on K is called \mathcal{L} -definable (for $\mathcal{L} \in \{\mathcal{L}_r, \mathcal{L}_{or}\}$) if its valuation ring \mathcal{O}_v is an \mathcal{L} -definable subset of K.

Main questions:

- Is there an ordered field K and a henselian valuation v on K such that v is \mathcal{L}_{or} -but not \mathcal{L}_{r} -definable?
- ② Is there an ordered field K and a *convex* valuation v on K such that v is \mathcal{L}_{or} but not \mathcal{L}_{r} -definable?

Expressive power: convex valuations

Is the language \mathcal{L}_{or} more expressive than \mathcal{L}_{r} in the context of ordered fields and convex valuations?

Definition

A valuation v on K is called \mathcal{L} -definable (for $\mathcal{L} \in \{\mathcal{L}_r, \mathcal{L}_{or}\}$) if its valuation ring \mathcal{O}_v is an \mathcal{L} -definable subset of K.

Main questions:

- Is there an ordered field K and a henselian valuation v on K such that v is \mathcal{L}_{or} -but not \mathcal{L}_{r} -definable? No.
- ② Is there an ordered field K and a *convex* valuation v on K such that v is \mathcal{L}_{or} but not \mathcal{L}_{r} -definable? Yes.

Previously known results on definable henselian valuations

Theorem (Ax, 1965)

The henselian valuation v_{\min} is \emptyset - \mathcal{L}_r -definable in $F((t)) = F((\mathbb{Z}))$. Hence, if F is undecidable, then so is F((t)).

Theorem (Hong, 2013/2014)

Let (F, v) be a henselian valued field. Suppose that one of the following holds:

- vF is discretely ordered, i.e. has a least positive element.
- ② vF is densely ordered and contains a convex subgroup that is p-regular but not p-divisible for some prime p.

Then v is \mathcal{L}_r -definable with one parameter from F.

Further results can be found in [Fehm, Jahnke, 2017].

Previously known result on definable convex valuations

Proposition (Jahnke, Simon, Walsberg, 2017)

If K is not dense in its real closure (with respect to the order-topology), then K admits a non-trivial \mathcal{L}_{or} -definable convex valuation.

- Motivation
- 2 Henselian valuations
- Convex valuations
- 4 Almost real closed fields

Answering our first main question

Theorem (Dittmann, Jahnke, K., Kuhlmann, 2022)

Let v be a henselian valuation on K. If v is \mathcal{L}_{or} -definable, then it is already \mathcal{L}_r -definable.

A main component of this proof is to show that the value group vK and the *ordered* residue field Kv are stably embedded in $(K, +, -, \cdot, 0, 1, <, v)$.

We can thus restrict ourselves to \mathcal{L}_r -definability in the context of henselian valuations!

Open problem:

Does the above also hold for parameter-free definability, i.e. is any \emptyset - \mathcal{L}_{or} -definable henselian valuation on an ordered field already \emptyset - \mathcal{L}_{r} -definable?

Conditions on the value group

Divisible hull of $G: \{\frac{g}{n} \mid g \in G, n \in \mathbb{N} \setminus \{0\}\}.$

Theorem (K., Kuhlmann, Link, 2022)

Let (F, v) be a henselian valued field such that vF is **not closed in its divisible hull**. Then v is \mathcal{L}_r -definable with one parameter from F.

This is a strict generalisation of Hong's result:

Theorem (Hong, 2013/2014)

Let (F, v) be a henselian valued field. Suppose that vF is densely ordered and contains a convex subgroup that is p-regular but not p-divisible for some prime p. Then v is \mathcal{L}_r -definable with one parameter from F.

Examples

Closed in divisible hull:

- Every discretely ordered abelian group is closed in its divisible hull.
- If G is non-divisible and H is divisible, then $G \oplus H$ is densely ordered and closed in its divisible hull. (E.g. $\mathbb{Z} \oplus \mathbb{Q}$.)
- A Hahn sum $\bigoplus_{i\in\mathbb{N}} G_i = G_0 \oplus G_1 \oplus \ldots$ is either divisible (i.e. each component G_i is divisible) or closed in its divisible hull.

Examples

Let $A = \{\frac{a}{2^n} \mid a \in \mathbb{Z}, n \in \mathbb{N}\}$ (the 2-divisible hull of \mathbb{Z}). Consider the following non-divisble densely ordered abelian groups with divisible hull $\mathbb{Q} \oplus \mathbb{Q}$:

- $\mathbb{Q} \oplus A$ is dense in its divisible hull. E.g. $(0, \frac{1}{2}) < (0, \frac{1}{2}) < (0, \frac{2}{2})$.
- A ⊕ ℚ is closed in its divisible hull.
 - E.g. $A \oplus \mathbb{Q}$ contains no element strictly between $(\frac{1}{3}, -1)$ and $(\frac{1}{3}, 1)$, so $(\frac{1}{3}, 0)$ is no limit point of $A \oplus \mathbb{Q}$.
- $A \oplus A$ is neither dense nor closed in its divisible hull. E.g. again $(\frac{1}{3},0) \in \mathbb{Q} \oplus \mathbb{Q}$ is no limit point of $A \oplus A$ but $(0,\frac{1}{3}) \notin A \oplus A$ is a limit point of $A \oplus A$.

Parameter-free definability

Theorem (Ax / Koenigsmann / Hong)

Let (F, v) be a henselian valued field. Suppose that one of the following holds:

- vF is discretely ordered and elementarily equivalent to \mathbb{Z} .
- 2 vF is densely ordered, non-divisible and dense in its divisible hull.

Then v is \emptyset - \mathcal{L}_r -definable.

Theorem (Hong / K., Kuhlmann, Link)

Let (F, v) be a henselian valued field. Suppose that one of the following holds:

- vF is discretely ordered.
- 2 vF is densely ordered and not closed in its divisible hull.

Then v is \mathcal{L}_r -definable with one parameter from F.

Parameter-free definability

Theorem (Hong / K., Kuhlmann, Link)

Let (F, v) be a henselian valued field. Suppose that one of the following holds:

- vF is discretely ordered.
- vF is densely ordered and not closed in its divisible hull.

Then v is \mathcal{L}_r -definable with one parameter from F.

In general, we cannot reduce to parameter-free definability!

Theorem (K., Kuhlmann, Link, 2022)

Suppose that $G \neq \{0\}$. Then there exists an ordered henselian valued field (K, v) such that $vK = \ldots \oplus G \oplus G$ and (K, <) admits no non-trivial \emptyset - $\mathcal{L}_{\mathrm{or}}$ -definable henselian valuation. In particular, v is not \emptyset - $\mathcal{L}_{\mathrm{or}}$ -definable.

This theorem relies on a construction method of t-henselian non-henselian ordered fields with prescribed value groups.

Parameter-free definability

Theorem (Hong / K., Kuhlmann, Link)

Let (F, v) be a henselian valued field. Suppose that one of the following holds:

- vF is discretely ordered.
- 2 vF is densely ordered and not closed in its divisible hull.

Then v is \mathcal{L}_r -definable with one parameter from F.

Theorem (K., Kuhlmann, Link, 2022)

Suppose that $G \neq \{0\}$. Then there exists an ordered henselian valued field (K, v) such that $vK = \ldots \oplus G \oplus G$ and K admits no non-trivial \emptyset - $\mathcal{L}_{\mathrm{or}}$ -definable henselian valuation. In particular, v is not \emptyset - $\mathcal{L}_{\mathrm{or}}$ -definable.

- Setting $G = \mathbb{Z}$, we obtain that vK is discretely ordered.
- Setting $G = \{\frac{a}{2^n} \mid a \in \mathbb{Z}, n \in \mathbb{N}\}$, we obtain that vK is densely ordered and not closed in its divisible hull.

- Motivation
- 2 Henselian valuations
- Convex valuations
- 4 Almost real closed fields

Density in real closure

Proposition (Jahnke, Simon, Walsberg, 2017)

If K is not dense in its real closure, then it admits a non-trivial \mathcal{L}_{cr} -definable convex valuation.

When is K not dense in its real closure? If K is dense in its real closure, then Kv is real closed and vK is divisible.

Theorem (Dittmann, Jahnke, K., Kuhlmann, 2022)

Let v be a convex valuation on K. Suppose that at least one of the following holds:

- vK is discretely ordered.
- 2 vK is not closed in its divisible hull.
- Kv is not closed in its real closure.

Then v is \mathcal{L}_{or} -definable (in the first two cases with one parameter from K).

Generalising previous results

Theorem (Dittmann, Jahnke, K., Kuhlmann, 2022)

Let v be a convex valuation on K. Suppose that at least one of the following holds:

- vK is discretely ordered.
- 2 vK is not closed in its divisible hull.
- **3** Kv is not closed in its real closure.

Then v is \mathcal{L}_{or} -definable (in the first two cases with one parameter from K).

Corollary

Let v be a convex valuation on K. Suppose that at least one of the following holds:

- **1** VK is discretely ordered and elementarily equivalent to \mathbb{Z} .
- 2 vK is densely ordered, non-divisible and dense in its divisible hull.
- 3 Kv is not real closed but dense in its real closure.

Then v is \emptyset - \mathcal{L}_{or} -definable.

Examples

- Every archimedean field is dense in its real closure. Moreover, density in the real closure transfers via \mathcal{L}_{or} -elementary equivalence.
- The ordered field of generealised power series K((G)) is either real closed (if and only if K is real closed and G is divisible) or closed in its real closure.
- $\mathbb{O}(t)$ with the ordering $0 < t < \mathbb{O}^{>0}$ is neither dense nor closed in its real closure.

Answering our second main question

Lemma (Dittmann, Jahnke, K., Kuhlmann, 2022)

Let $F = \mathbb{Q}(s_i \mid i \in \mathbb{N})$, where the s_i are algebraically independent over \mathbb{Q} . Suppose that v is a valuation on F with $v(s_0) < 0$ and $v(s_i) \geq 0$ for i > 0. Then v is not \mathcal{L}_r -definable.

Example of a \emptyset - \mathcal{L}_{or} -definable but not \mathcal{L}_{r} -definable convex valuation:

- Let $k = \mathbb{Q}(s_1, s_2, \ldots) \subseteq \mathbb{R}$, where the s_i are algebraically independent over \mathbb{Q} .
- Set $K = k(t^{-1}) = k(t) \subseteq k((t))$.
- Then $v_{\min}K = \mathbb{Z}$, so v_{\min} is \emptyset - \mathcal{L}_{or} -definable.
- However, $v_{\min}(t^{-1}) = -1 < 0$ and $v_{\min}(s_i) = 0$ for i > 0, so v_{\min} is not \mathcal{L}_r -definable.

- Motivation
- 2 Henselian valuations
- Convex valuations
- 4 Almost real closed fields

Definable valuations

Definition

Let v be a valuation on F. Then F is called **almost real closed** (with respect to v) if v is henselian and Fv is real closed.

- Every almost real closed field is \mathcal{L}_{r} -elementarily equivalent to $\mathbb{R}(\!(G)\!)$ for some G.
- Every almost real closed field can be ordered, but the ordering is not necessarily unique.
- In almost real closed fields, all convex valuations are already henselian.
- Definable henselian valuations in almost real closed fields were well-studied by Delon–Farré (1996).

Theorem (Dittmann, Jahnke, K., Kuhlmann, 2022)

Let F be an almost real closed field and let < be any ordering on F. Then **any** \mathcal{L}_{or} -definable valuation on (F,<) is henselian (and thus already \mathcal{L}_{r} -definable).

Classification of strongly dependent ordered fields

What are necessary and sufficient conditions on an ordered field to be strongly dependent?

```
 \begin{array}{c} \textbf{o-minimal} \to \textbf{weakly o-minimal} \to \\ \textbf{dp-minimal} \to \textbf{dp-finite} \to \textbf{strongly dependent} \to \textbf{NIP} \end{array}
```

Classification of strongly dependent ordered fields

Conjecture (Shelah et al.)

Any infinite strongly dependent field F is either algebraically closed, real closed or admits a non-trivial \mathcal{L}_r -definable henselian valuation.

Specialised to ordered fields:

Conjecture

Any strongly dependent ordered field K is either real closed or admits a non-trivial \mathcal{L}_{r} -definable henselian valuation.

Strongly dependent almost real closed fields

Theorem (K., Kuhlmann, Lehéricy, 2021)

The following are equivalent:

- **1** Any strongly dependent ordered field is either real closed or admits a non-trivial \mathcal{L}_r -definable henselian valuation.
- Any strongly dependent ordered field is almost real closed.

Theorem (K., Kuhlmann, Lehéricy, 2021)

Let (K,<) be almost real closed field with respect to v. Then (K,<) is strongly dependent if and only if vK is strongly dependent (as an ordered abelian group).

Not every strongly dependent ordered field is almost real closed with respect to some \mathcal{L}_r -definable henselian valuation! (K., Kuhlmann, Lehéricy, 2021)

Further definability questions in the study of (N)IP ordered fields

The smallest ordered field: since \mathbb{Z} is \mathcal{L}_r -definable in \mathbb{Q} , this ordered field has the independence property.

- **1** In what ordered fields K is \mathbb{Z} definable (in the language \mathcal{L}_{r} or \mathcal{L}_{or})?
- ② In what ordered fields K is a subring with infinitely many non-associated primes definable (in the language \mathcal{L}_r or \mathcal{L}_{or})?
- **3** Is \mathbb{Z} or any other ring as in (2) definable in the euclidean closure of \mathbb{Q} ?
- **②** Given a \mathbb{Q} -algebraically independent set $B \subseteq \mathbb{R}$, is \mathbb{Z} or any other ring as in (2) definable in $\mathbb{Q}(B)$?

:

See posters of Laura Wirth and Lasse Vogel.

Primary References

- P. DITTMANN, F. JAHNKE, L. S. KRAPP and S. KUHLMANN, 'Definable valuations on ordered fields', to appear in *Model Theory*, 2022, 17 pp., arXiv:2206.15301.
- L. S. KRAPP, S. KUHLMANN and G. LEHÉRICY, 'Ordered fields dense in their real closure and definable convex valuations', Forum Math. 33 (2021) 953-972.
- L. S. KRAPP, S. KUHLMANN and G. LEHÉRICY, 'Strongly NIP almost real closed fields', MLQ Math. Log. Q. 67 (2021) 321-328.
- L. S. KRAPP, S. KUHLMANN and M. LINK, 'Definability of henselian valuations by conditions on the value group', to appear in *J. Symb. Log.*, 2022, 19 pp., arXiv:2105.09234.

Further References

- J. Ax, 'On the undecidability of power series fields', Proc. Amer. Math. Soc. 16 (1965) 846.
- F. DELON and R. FARRÉ, 'Some model theory for almost real closed fields', J. Symb. Log. 61 (1996) 1121–1152, doi:10.2307/2275808.
- R. FARRÉ, 'A transfer theorem for Henselian valued and ordered fields', J. Symb. Log. 58 (1993) 915–930, doi:10.2307/2275104.
- A. FEHM and F. JAHNKE, 'Recent progress on definability of Henselian valuations', Ordered Algebraic Structures and Related Topics, Contemp. Math. 697 (eds F. Broglia, F. Delon, M. Dickmann, D. Gondard-Cozette and V. A. Powers; Amer. Math. Soc., Providence, RI, 2017), 135–143.
- J. Hong, Immediate expansions by valuations of fields, doctoral thesis, McMaster University, 2013.

Further References

- J. Hong, 'Definable non-divisible Henselian valuations', Bull. Lond. Math. Soc. 46 (2014) 14–18.
- F. JAHNKE, P. SIMON and E. WALSBERG, 'Dp-minimal valued fields', J. Symb. Log. 82 (2017) 151-165, doi:10.1017/jsl.2016.15.
- M. KNEBUSCH and M. J. WRIGHT, 'Bewertungen mit reeller Henselisierung', J. Reine Angew. Math. 286/287 (1976) 314-321, doi:10.1515/crll.1976.286-287.314.
- J. KOENIGSMANN, 'Elementary characterization of fields by their absolute Galois group', Sib. Adv. Math. 14 (2004) 16-42.
- S. Shelah. 'Strongly dependent theories'. Israel J. Math. 204 (2014) 1–83. doi:10.1007/s11856-014-1111-2.