Existential closedness of $\overline{\mathbb{Q}}$
 as a globally valued field

M. Szachniewicz ${ }^{1}$
${ }^{1}$ Mathematical Institute University of Oxford
Luminy, May 2023

Table of Contents

(1) Motivation
(2) Globally Valued Fields
(3) Arakelov geometry
(4) Proof of the main result

Table of Contents

(1) Motivation
(2) Globally Valued Fields
(3) Arakelov geometry

(4) Proof of the main result

Height on \mathbb{Q}

For a rational number $q=\frac{a}{b} \in \mathbb{Q}^{\times}$presented in a coprime way its height is by definition the real number $h t(q)=\log \max (|a|,|b|)$.

Height on \mathbb{Q}

For a rational number $q=\frac{a}{b} \in \mathbb{Q}^{\times}$presented in a coprime way its height is by definition the real number $h t(q)=\log \max (|a|,|b|)$.
It measures complexity of a number.

Height on \mathbb{Q}

For a rational number $q=\frac{a}{b} \in \mathbb{Q}^{\times}$presented in a coprime way its height is by definition the real number $h t(q)=\log \max (|a|,|b|)$.
It measures complexity of a number.
One can define it without referring to a presentation as a quotient of two integers. Note that

$$
\operatorname{ht}(q)=\sum_{p: \text { prime }} \max \left(\operatorname{ord}_{p}(q), 0\right) \log p+\max (-\log |q|, 0) .
$$

Height on \mathbb{Q}

For a rational number $q=\frac{a}{b} \in \mathbb{Q}^{\times}$presented in a coprime way its height is by definition the real number $h t(q)=\log \max (|a|,|b|)$.
It measures complexity of a number.
One can define it without referring to a presentation as a quotient of two integers. Note that

$$
\operatorname{ht}(q)=\sum_{p: \text { prime }} \max \left(\operatorname{ord}_{p}(q), 0\right) \log p+\max (-\log |q|, 0) .
$$

Example

$\left.h t\left(\frac{2}{3}\right)=\max \left(\operatorname{ord}_{2}\left(\frac{2}{3}\right), 0\right) \log 2+\max \left(\operatorname{ord}_{3}\left(\frac{2}{3}\right), 0\right) \log 3+\max \left(-\log \frac{2}{3}, 0\right)\right)=$ $\log 2+\log \frac{3}{2}=\log 3$.

Height on

For $q \in \overline{\mathbb{Q}}^{\times}$one defines the Weil logarithmic height by

$$
\begin{aligned}
& \operatorname{ht}(q)=\frac{1}{[K: \mathbb{Q}]}\left(\sum_{p: \text { prime in } \mathcal{O}_{K}} \max \left(\operatorname{ord}_{p}(q), 0\right) \log \# \kappa(p)\right. \\
& \left.\quad+\sum_{\sigma: K \rightarrow \mathbb{C}} \max (-\log |\sigma(q)|, 0)\right)
\end{aligned}
$$

Height on

For $q \in \overline{\mathbb{Q}}^{\times}$one defines the Weil logarithmic height by

$$
\begin{aligned}
& \operatorname{ht}(q)=\frac{1}{[K: \mathbb{Q}]}\left(\sum_{p: \text { prime in } \mathcal{O}_{K}} \max \left(\operatorname{ord}_{p}(q), 0\right) \log \# \kappa(p)\right. \\
& \left.\quad+\sum_{\sigma: K \rightarrow \mathbb{C}} \max (-\log |\sigma(q)|, 0)\right)
\end{aligned}
$$

Here (and in the rest of this presentation) K is any number field with $q \in K$ and $h t(q)$ does not depend on the choice of such K.

Height on

For $q \in \overline{\mathbb{Q}}^{\times}$one defines the Weil logarithmic height by

$$
\begin{aligned}
& \operatorname{ht}(q)=\frac{1}{[K: \mathbb{Q}]}\left(\sum_{p: \text { prime in } \mathcal{O}_{K}} \max \left(\operatorname{ord}_{p}(q), 0\right) \log \# \kappa(p)\right. \\
& \left.\quad+\sum_{\sigma: K \rightarrow \mathbb{C}} \max (-\log |\sigma(q)|, 0)\right)
\end{aligned}
$$

Here (and in the rest of this presentation) K is any number field with $q \in K$ and $h t(q)$ does not depend on the choice of such K. Let Val_{K} be a set of valuations (both non-Archimedean and Archimedean, i.e., minus logarithms of norms coming from embeddings into \mathbb{C}) on K.

Let μ be the discrete measure

$$
\mu:=\frac{1}{[K: \mathbb{Q}]}\left(\sum_{p \in \operatorname{Spec}\left(\mathcal{O}_{K}\right)} \delta_{\operatorname{ord}_{p}} \cdot \log \# \kappa(p)+\sum_{\sigma: K \rightarrow \mathbb{C}} \delta_{-\log |\sigma(-)|}\right)
$$

Height on $\overline{\mathbb{Q}}$ continued

Then for $q \in K$ we can simple write

$$
\operatorname{ht}(q)=\int_{\text {Val }_{K}} \max (v(q), 0) d \mu(v)
$$

Height on $\overline{\mathbb{Q}}$ continued

Then for $q \in K$ we can simple write

$$
\operatorname{ht}(q)=\int_{\text {Val }_{K}} \max (v(q), 0) d \mu(v)
$$

Similarly, for a point $x=\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{P}^{n}(K) \subset \mathbb{P}^{n}(\overline{\mathbb{Q}})$, we can define

$$
\operatorname{ht}(x)=\int_{\operatorname{Val}_{K}} \max _{i}\left(v\left(x_{i}\right)\right) d \mu(v)
$$

Height on $\overline{\mathbb{Q}}$ continued

Then for $q \in K$ we can simple write

$$
\operatorname{ht}(q)=\int_{\text {Val }_{K}} \max (v(q), 0) d \mu(v)
$$

Similarly, for a point $x=\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{P}^{n}(K) \subset \mathbb{P}^{n}(\overline{\mathbb{Q}})$, we can define

$$
h t(x)=\int_{\operatorname{Val}_{k}} \max _{i}\left(v\left(x_{i}\right)\right) d \mu(v)
$$

It does not depend on the choice of coordinates for x because of the following.

Projection formula

$$
\int_{\operatorname{Val}_{K}} v(q) d \mu(v)=0
$$

Classical applications

These heights are useful in many situations such as the following.

Classical applications

These heights are useful in many situations such as the following.

Mordell-Weil theorem

Let E be an elliptic curve (or an abelian variety) over K. Then $E(K)$ is a finitely generated abelian group.

Classical applications

These heights are useful in many situations such as the following.

Mordell-Weil theorem

Let E be an elliptic curve (or an abelian variety) over K. Then $E(K)$ is a finitely generated abelian group.

Faltings theorem

Let C be a genus $g>1$ curve over K. Then $C(K)$ is finite.

Classical applications

These heights are useful in many situations such as the following.

Mordell-Weil theorem

Let E be an elliptic curve (or an abelian variety) over K. Then $E(K)$ is a finitely generated abelian group.

Faltings theorem

Let C be a genus $g>1$ curve over K. Then $C(K)$ is finite.
However, in these theorems the degree is bounded/the number field is fixed.

Table of Contents

(1) Motivation
(2) Globally Valued Fields
(3) Arakelov geometry
(4) Proof of the main result

The structures

Definition [BH22]

A GVF is a field F together with a (class of) measure μ on the space of "valuations" Val_{F} which satisfies the product formula, i.e.,

$$
\int_{\mathrm{Val}_{F}} v(a) d \mu(v)=0 \text { for all } a \in F^{\times}
$$

The structures

Definition [BH22]

A GVF is a field F together with a (class of) measure μ on the space of "valuations" Val_{F} which satisfies the product formula, i.e.,

$$
\int_{\mathrm{Val}_{F}} v(a) d \mu(v)=0 \text { for all } a \in F^{\times}
$$

One can see these structures as models of an unbounded continuous theory (in the sense of [Ben08]) in the following way.

The structures

Definition [BH22]

A GVF is a field F together with a (class of) measure μ on the space of "valuations" Val_{F} which satisfies the product formula, i.e.,

$$
\int_{\operatorname{Val}_{F}} v(a) d \mu(v)=0 \text { for all } a \in F^{\times}
$$

One can see these structures as models of an unbounded continuous theory (in the sense of [Ben08]) in the following way.
Let t be a \mathbb{Q}-tropical polynomial, i.e., a term in the language $+, \min , 0,(q \cdot)_{q \in \mathbb{Q}}$. For example $t(x, y)=\max (x, \max (x+y, y+3))$.

The structures

Definition [BH22]

A GVF is a field F together with a (class of) measure μ on the space of "valuations" Val_{F} which satisfies the product formula, i.e.,

$$
\int_{\operatorname{Val}_{F}} v(a) d \mu(v)=0 \text { for all } a \in F^{\times}
$$

One can see these structures as models of an unbounded continuous theory (in the sense of [Ben08]) in the following way.
Let t be a \mathbb{Q}-tropical polynomial, i.e., a term in the language $+, \min , 0,(q \cdot)_{q \in \mathbb{Q}}$. For example $t(x, y)=\max (x, \max (x+y, y+3))$.
We define

$$
R_{t}(a, b):=\int_{\mathrm{Val}_{F}} t(v(a), v(b)) d \mu(v)
$$

The structures

Definition [BH22]

A GVF is a field F together with a (class of) measure μ on the space of "valuations" Val_{F} which satisfies the product formula, i.e.,

$$
\int_{\mathrm{Val}_{F}} v(a) d \mu(v)=0 \text { for all } a \in F^{\times}
$$

One can see these structures as models of an unbounded continuous theory (in the sense of [Ben08]) in the following way.
Let t be a \mathbb{Q}-tropical polynomial, i.e., a term in the language $+, \min , 0,(q \cdot)_{q \in \mathbb{Q}}$. For example $t(x, y)=\max (x, \max (x+y, y+3))$.
We define

$$
R_{t}(a, b):=\int_{\mathrm{Val}_{F}} t(v(a), v(b)) d \mu(v)
$$

One can write universal axioms on R_{t} 's, so that a field equipped with predicates satisfying these axioms comes from a measure as above,

Examples

For $a \in F^{\times}$we define its height (with respect to some GVF structure) $h t(a)=\int_{V_{\text {al }}^{F}} \max (v(a), 0) d \mu(v)$. Here are a few GVFs:

- $\overline{\mathbb{Q}}$ with the predicates defined as Weil logarithmic heights. It is denoted $\overline{\mathbb{Q}}[1]$ (if we multiply all predicates by $r>0$ we get $\overline{\mathbb{Q}}[r]$).

Examples

For $a \in F^{\times}$we define its height (with respect to some GVF structure) $h t(a)=\int_{\text {Val }_{F}} \max (v(a), 0) d \mu(v)$. Here are a few GVFs:

- $\overline{\mathbb{Q}}$ with the predicates defined as Weil logarithmic heights. It is denoted $\overline{\mathbb{Q}}[1]$ (if we multiply all predicates by $r>0$ we get $\overline{\mathbb{Q}}[r]$).
- If $\left(K_{i}\right)_{i \in I}$ we can take ultraproduct which by definition consists of classes of sequences with bounded height.

Examples

For $a \in F^{\times}$we define its height (with respect to some GVF structure) $h t(a)=\int_{V_{\text {al }}^{F}} \max (v(a), 0) d \mu(v)$. Here are a few GVFs:

- $\overline{\mathbb{Q}}$ with the predicates defined as Weil logarithmic heights. It is denoted $\overline{\mathbb{Q}}[1]$ (if we multiply all predicates by $r>0$ we get $\overline{\mathbb{Q}}[r]$).
- If $\left(K_{i}\right)_{i \in I}$ we can take ultraproduct which by definition consists of classes of sequences with bounded height.
- For any field k we can equip $\overline{k(t)}$ with a unique GVF structure where the measure concentrates on valuations trivial on k and $h t(t)=1$. In [BH 21$]$ it is shown that $\overline{k(t)}$ is existentially closed, i.e., whenever $k(t) \subset F$ is a GVF extension, then F embeds into some ultrapower of $\overline{k(t)}$ over $\overline{k(t)}$.

Examples

For $a \in F^{\times}$we define its height (with respect to some GVF structure) $h t(a)=\int_{V_{\text {al }} /} \max (v(a), 0) d \mu(v)$. Here are a few GVFs:

- $\overline{\mathbb{Q}}$ with the predicates defined as Weil logarithmic heights. It is denoted $\overline{\mathbb{Q}}[1]$ (if we multiply all predicates by $r>0$ we get $\overline{\mathbb{Q}}[r]$).
- If $\left(K_{i}\right)_{i \in I}$ we can take ultraproduct which by definition consists of classes of sequences with bounded height.
- For any field k we can equip $\overline{k(t)}$ with a unique GVF structure where the measure concentrates on valuations trivial on k and $h t(t)=1$. In [BH21] it is shown that $\overline{k(t)}$ is existentially closed, i.e., whenever $\overline{k(t)} \subset F$ is a GVF extension, then F embeds into some ultrapower of $\overline{k(t)}$ over $\overline{k(t)}$.
- If X is a variety over k, a movable curve (or $\operatorname{dim} X-1$ ample divisors D_{1}, \ldots) induces a GVF structure on $k(X)$. Moreover, the space of GVF structures on $k(X)$ is homeomorphic to $\lim _{\leftrightarrows} N_{1}^{+}\left(X^{\prime}\right)$ for the system of blowups $X^{\prime} \rightarrow X$.

Arithmetic example

Bilu equidistribution

Let $a_{n} \in \overline{\mathbb{Q}}^{\times}$be a sequence with $\operatorname{deg}\left(a_{n}\right) \rightarrow \infty$ and $h t\left(a_{n}\right) \rightarrow 0$. Define measures

$$
\mu_{n}:=\frac{1}{\operatorname{deg}\left(a_{n}\right)} \sum_{x \in G \cdot a_{n}} \delta_{x}
$$

where $G=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ and δ_{x} is the Dirac delta at x. Then μ_{n} weakly converge to the Lebesgue measure on the unit circle in \mathbb{C}.

Arithmetic example

Bilu equidistribution

Let $a_{n} \in \overline{\mathbb{Q}}^{\times}$be a sequence with $\operatorname{deg}\left(a_{n}\right) \rightarrow \infty$ and $h t\left(a_{n}\right) \rightarrow 0$. Define measures

$$
\mu_{n}:=\frac{1}{\operatorname{deg}\left(a_{n}\right)} \sum_{x \in G \cdot a_{n}} \delta_{x},
$$

where $G=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ and δ_{x} is the Dirac delta at x. Then μ_{n} weakly converge to the Lebesgue measure on the unit circle in \mathbb{C}.

From the point of view of GVFs this follows from the following fact.

[BH21, Lemma 6.5]

There is a unique GVF structure on $\overline{\mathbb{Q}}(x)$ extending $\overline{\mathbb{Q}}[1]$ with $h t(x)=0$.

Arithmetic example

Bilu equidistribution

Let $a_{n} \in \overline{\mathbb{Q}}^{\times}$be a sequence with $\operatorname{deg}\left(a_{n}\right) \rightarrow \infty$ and $\operatorname{ht}\left(a_{n}\right) \rightarrow 0$. Define measures

$$
\mu_{n}:=\frac{1}{\operatorname{deg}\left(a_{n}\right)} \sum_{x \in G \cdot a_{n}} \delta_{x},
$$

where $G=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ and δ_{x} is the Dirac delta at x. Then μ_{n} weakly converge to the Lebesgue measure on the unit circle in \mathbb{C}.

From the point of view of GVFs this follows from the following fact.

[BH21, Lemma 6.5]

There is a unique GVF structure on $\overline{\mathbb{Q}}(x)$ extending $\overline{\mathbb{Q}}[1]$ with $h t(x)=0$.
More precisely, the measure μ defining restriction of such GVF structure to $\mathbb{Q}(x)$, if restricted to the set of complex places of $\mathbb{Q}(x)$, is the Lebesgue measure on the unit circle in \mathbb{C}.

Existential closeness of $\overline{\mathbb{Q}}[1]$

Theorem (Sz.)

$\overline{\mathbb{Q}}[1]$ is an existentially closed GVF.

Existential closeness of $\overline{\mathbb{Q}}[1]$

Theorem (Sz.)

$\overline{\mathbb{Q}}[1]$ is an existentially closed GVF.
It is equivalent to the following statement:

Corollary

Assume that X is an affine variety over \mathbb{Q} and assume that we are given morphisms $f_{1}, \ldots, f_{n}: X \rightarrow \mathbb{A}^{m}$. Equip $F=\mathbb{Q}(X)=\mathbb{Q}(\bar{a})$ with a GVF structure and denote $R_{t_{i}}\left(f_{i}(\bar{a})\right)=r_{i}$ for some \mathbb{Q}-tropical polynomials t_{1}, \ldots, t_{n}.

Existential closeness of $\overline{\mathbb{Q}}[1]$

Theorem (Sz.)

$\overline{\mathbb{Q}}[1]$ is an existentially closed GVF.
It is equivalent to the following statement:

Corollary

Assume that X is an affine variety over \mathbb{Q} and assume that we are given morphisms $f_{1}, \ldots, f_{n}: X \rightarrow \mathbb{A}^{m}$. Equip $F=\mathbb{Q}(X)=\mathbb{Q}(\bar{a})$ with a GVF structure and denote $R_{t_{i}}\left(f_{i}(\bar{a})\right)=r_{i}$ for some \mathbb{Q}-tropical polynomials t_{1}, \ldots, t_{n}.
Let $\varepsilon>0$. Then we can find a (sufficiently generic) $x \in X(\overline{\mathbb{Q}})$ such that for all $i=1, \ldots, n$ we have

$$
\left|R_{t_{i}}\left(f_{i}\left(\left.\bar{a}\right|_{x}\right)\right)-r_{i}\right|<\varepsilon
$$

Applications

The existential closedness of $\overline{\mathbb{Q}}$ can be used in the following situations.

- A direct application is an L^{1} Fekete-Szegő type result for varieties of arbitrary dimension, i.e., [BH22, Theorem 3.11] for number fields.

Applications

The existential closedness of $\overline{\mathbb{Q}}$ can be used in the following situations.

- A direct application is an L^{1} Fekete-Szegő type result for varieties of arbitrary dimension, i.e., [BH22, Theorem 3.11] for number fields.
- It yields an alternative definition of the arithmetic essential infimum function.

Applications

The existential closedness of $\overline{\mathbb{Q}}$ can be used in the following situations.

- A direct application is an L^{1} Fekete-Szegő type result for varieties of arbitrary dimension, i.e., [BH22, Theorem 3.11] for number fields.
- It yields an alternative definition of the arithmetic essential infimum function.
- (in progress) The existential closedness of $\overline{\mathbb{C}(t)}$ from [BH22, Theorem 2.1] and its proof can be used to derive some version of non-Archimedean Calabi-Yau theorem. What about the $\overline{\mathbb{Q}}$ case?

Applications

The existential closedness of $\overline{\mathbb{Q}}$ can be used in the following situations.

- A direct application is an L^{1} Fekete-Szegő type result for varieties of arbitrary dimension, i.e., [BH22, Theorem 3.11] for number fields.
- It yields an alternative definition of the arithmetic essential infimum function.
- (in progress) The existential closedness of $\overline{\mathbb{C}(t)}$ from $[\mathrm{BH} 22$, Theorem 2.1] and its proof can be used to derive some version of non-Archimedean Calabi-Yau theorem. What about the $\overline{\mathbb{Q}}$ case?
- (in progress) If E is an elliptic curve can one find optimal bounds on $h t\left((2 P)_{x}\right)-4 h t\left(P_{x}\right)$ by finding a GVF measure on the function field $\mathbb{Q}(E)$? More general questions about extremes of heights...

Table of Contents

(1) Motivation

(2) Globally Valued Fields
(3) Arakelov geometry

(4) Proof of the main result

Arithmetic divisors

The proof of e.c. of $\overline{\mathbb{Q}}[1]$ uses Arakelov geometry, which gives a more conceptual understanding of predicates $R_{t}(f(-))$.

Arithmetic divisors

The proof of e.c. of $\overline{\mathbb{Q}}[1]$ uses Arakelov geometry, which gives a more conceptual understanding of predicates $R_{t}(f(-))$.

Let X be a (smooth) variety over \mathbb{Q} and let \mathcal{X} be a \mathbb{Z}-model of X, i.e., a projective (normal, generically smooth) scheme over $\operatorname{Spec}(\mathbb{Z})$ with $\mathcal{X} \otimes \mathbb{Q}=X$.

Arithmetic divisors

The proof of e.c. of $\overline{\mathbb{Q}}[1]$ uses Arakelov geometry, which gives a more conceptual understanding of predicates $R_{t}(f(-))$.

Let X be a (smooth) variety over \mathbb{Q} and let \mathcal{X} be a \mathbb{Z}-model of X, i.e., a projective (normal, generically smooth) scheme over $\operatorname{Spec}(\mathbb{Z})$ with $\mathcal{X} \otimes \mathbb{Q}=X$.
For example $\mathbb{P}_{\mathbb{Z}}^{n}$ is a \mathbb{Z}-model of $\mathbb{P}_{\mathbb{Q}}^{n}$.

Arithmetic divisors

The proof of e.c. of $\overline{\mathbb{Q}}[1]$ uses Arakelov geometry, which gives a more conceptual understanding of predicates $R_{t}(f(-))$.

Let X be a (smooth) variety over \mathbb{Q} and let \mathcal{X} be a \mathbb{Z}-model of X, i.e., a projective (normal, generically smooth) scheme over $\operatorname{Spec}(\mathbb{Z})$ with $\mathcal{X} \otimes \mathbb{Q}=X$.
For example $\mathbb{P}_{\mathbb{Z}}^{n}$ is a \mathbb{Z}-model of $\mathbb{P}_{\mathbb{Q}}^{n}$.

Definition

An arithmetic divisor $\overline{\mathcal{D}}=(\mathcal{D}, g)$ on \mathcal{X} is a divisor \mathcal{D} (linear combination of codimension one subvarieties) on \mathcal{X} together with a Green function $g:(\mathcal{X} \backslash \operatorname{supp}(\mathcal{D}))^{\text {an }} \rightarrow \mathbb{R}$.

Arithmetic divisors

The proof of e.c. of $\overline{\mathbb{Q}}[1]$ uses Arakelov geometry, which gives a more conceptual understanding of predicates $R_{t}(f(-))$.

Let X be a (smooth) variety over \mathbb{Q} and let \mathcal{X} be a \mathbb{Z}-model of X, i.e., a projective (normal, generically smooth) scheme over $\operatorname{Spec}(\mathbb{Z})$ with $\mathcal{X} \otimes \mathbb{Q}=X$.
For example $\mathbb{P}_{\mathbb{Z}}^{n}$ is a \mathbb{Z}-model of $\mathbb{P}_{\mathbb{Q}}^{n}$.

Definition

An arithmetic divisor $\overline{\mathcal{D}}=(\mathcal{D}, g)$ on \mathcal{X} is a divisor \mathcal{D} (linear combination of codimension one subvarieties) on \mathcal{X} together with a Green function $g:(\mathcal{X} \backslash \operatorname{supp}(\mathcal{D}))^{\text {an }} \rightarrow \mathbb{R}$.

A function $g:(\mathcal{X} \backslash \operatorname{supp}(\mathcal{D}))^{\text {an }} \rightarrow \mathbb{R}$ is a Green function for \mathcal{D}, if for any open $\mathcal{U} \subset \mathcal{X}$ on which \mathcal{D} is given by equation $d=0$ the function $g+\log |d|$ extends to a continuous function on the complex analytification $\mathcal{U}^{\text {an }}$.

Lattice structure

Example

If $f \in \mathbb{Q}(\mathcal{X})$, then one can define $\widehat{\operatorname{div}}(f)=(\operatorname{div}(f),-\log |f|)$.

Lattice structure

Example

If $f \in \mathbb{Q}(\mathcal{X})$, then one can define $\widehat{\operatorname{div}}(f)=(\operatorname{div}(f),-\log |f|)$.
Let $\overline{\mathcal{D}}, \overline{\mathcal{E}}$ be adelic divisors on \mathcal{X} with \mathcal{D}, \mathcal{E} effective. If $\mathcal{D} \cap \mathcal{E}$ is a (Cartier) divisor, one defines:

$$
\overline{\mathcal{D}} \wedge \overline{\mathcal{E}}:=\left(\mathcal{D} \cap \mathcal{E}, \min \left(g_{\mathcal{D}}, g_{\mathcal{E}}\right)\right)
$$

Lattice structure

Example

If $f \in \mathbb{Q}(\mathcal{X})$, then one can define $\widehat{\operatorname{div}}(f)=(\operatorname{div}(f),-\log |f|)$.
Let $\overline{\mathcal{D}}, \overline{\mathcal{E}}$ be adelic divisors on \mathcal{X} with \mathcal{D}, \mathcal{E} effective. If $\mathcal{D} \cap \mathcal{E}$ is a (Cartier) divisor, one defines:

$$
\overline{\mathcal{D}} \wedge \overline{\mathcal{E}}:=\left(\mathcal{D} \cap \mathcal{E}, \min \left(g_{\mathcal{D}}, g_{\mathcal{E}}\right)\right)
$$

If the intersection is not a divisor, one can pass to to a blowup $\mathcal{X}^{\prime} \rightarrow \mathcal{X}$ to ensure that it is the case. The function field $\mathbb{Q}\left(\mathcal{X}^{\prime}\right)=\mathbb{Q}(\mathcal{X})=\mathbb{Q}(X)$ stays the same.

Lattice structure

Example

If $f \in \mathbb{Q}(\mathcal{X})$, then one can define $\widehat{\operatorname{div}}(f)=(\operatorname{div}(f),-\log |f|)$.
Let $\overline{\mathcal{D}}, \overline{\mathcal{E}}$ be adelic divisors on \mathcal{X} with \mathcal{D}, \mathcal{E} effective. If $\mathcal{D} \cap \mathcal{E}$ is a (Cartier) divisor, one defines:

$$
\overline{\mathcal{D}} \wedge \overline{\mathcal{E}}:=\left(\mathcal{D} \cap \mathcal{E}, \min \left(g_{\mathcal{D}}, g_{\mathcal{E}}\right)\right)
$$

If the intersection is not a divisor, one can pass to to a blowup $\mathcal{X}^{\prime} \rightarrow \mathcal{X}$ to ensure that it is the case. The function field $\mathbb{Q}\left(\mathcal{X}^{\prime}\right)=\mathbb{Q}(\mathcal{X})=\mathbb{Q}(X)$ stays the same.
We can form (modulo technicalities) a real vector space of adelic divisors on blowups of \mathcal{X} denoted by $\operatorname{ADiv}(\mathbb{Q}(\mathcal{X}))$. It has lattice operations \wedge, \vee.

Lattice structure

Example

If $f \in \mathbb{Q}(\mathcal{X})$, then one can define $\widehat{\operatorname{div}}(f)=(\operatorname{div}(f),-\log |f|)$.
Let $\overline{\mathcal{D}}, \overline{\mathcal{E}}$ be adelic divisors on \mathcal{X} with \mathcal{D}, \mathcal{E} effective. If $\mathcal{D} \cap \mathcal{E}$ is a (Cartier) divisor, one defines:

$$
\overline{\mathcal{D}} \wedge \overline{\mathcal{E}}:=\left(\mathcal{D} \cap \mathcal{E}, \min \left(g_{\mathcal{D}}, g_{\mathcal{E}}\right)\right)
$$

If the intersection is not a divisor, one can pass to to a blowup $\mathcal{X}^{\prime} \rightarrow \mathcal{X}$ to ensure that it is the case. The function field $\mathbb{Q}\left(\mathcal{X}^{\prime}\right)=\mathbb{Q}(\mathcal{X})=\mathbb{Q}(X)$ stays the same.
We can form (modulo technicalities) a real vector space of adelic divisors on blowups of \mathcal{X} denoted by $\operatorname{ADiv}(\mathbb{Q}(\mathcal{X}))$. It has lattice operations \wedge, \vee. By definition $\overline{\mathcal{D}} \vee \overline{\mathcal{E}}:=-((-\overline{\mathcal{D}}) \wedge(-\overline{\mathcal{E}}))$ and \mathcal{D} is called effective $(\overline{\mathcal{D}} \geq 0)$, if $\overline{\mathcal{D}} \vee 0=\overline{\mathcal{D}}$.

Height with respect to an adelic divisor

Definition

If $\overline{\mathcal{D}}$ is an adelic divisor on \mathcal{X} (with \mathcal{D} effective) and $x \in X(\overline{\mathbb{Q}})$ we define the height $h_{\overline{\mathcal{D}}}(x)$ as the number

$$
h_{\overline{\mathcal{D}}}(x):=\frac{1}{[\kappa(x): \mathbb{Q}]}\left(\log \#\left(\mathcal{O}_{\mathcal{C}}(\mathcal{D}) / \mathcal{O}_{\mathcal{C}}\right)+\sum_{\sigma: \kappa(x) \rightarrow \mathbb{C}} g\left(x^{\sigma}\right)\right)
$$

where \mathcal{C} is the closure of $\{x\}$ in \mathcal{X}.

Height with respect to an adelic divisor

Definition

If $\overline{\mathcal{D}}$ is an adelic divisor on \mathcal{X} (with \mathcal{D} effective) and $x \in X(\overline{\mathbb{Q}})$ we define the height $h_{\overline{\mathcal{D}}}(x)$ as the number

$$
h_{\overline{\mathcal{D}}}(x):=\frac{1}{[\kappa(x): \mathbb{Q}]}\left(\log \#\left(\mathcal{O}_{\mathcal{C}}(\mathcal{D}) / \mathcal{O}_{\mathcal{C}}\right)+\sum_{\sigma: \kappa(x) \rightarrow \mathbb{C}} g\left(x^{\sigma}\right)\right),
$$

where \mathcal{C} is the closure of $\{x\}$ in \mathcal{X}.

Fact

Let $\overline{\mathcal{D}}=t(\widehat{\operatorname{div}}(\bar{a}))$ for some $\bar{a} \in \mathbb{Q}(\mathcal{X})$ and a \mathbb{Q}-tropical polynomial t. Pick $x \in X(\overline{\mathbb{Q}})$ such that $x \notin \operatorname{supp}(\mathcal{D})$. Then in $\overline{\mathbb{Q}}[1]$

$$
h_{\overline{\mathcal{D}}}(x)=R_{t}\left(\left.\bar{a}\right|_{x}\right)
$$

Comparison

Definition

Let $I: \operatorname{ADiv}(\mathbb{Q}(\mathcal{X})) \rightarrow \mathbb{R}$ be a linear map over \mathbb{R}. It is called a normalised GVF functional if it:

- sends $\widehat{\operatorname{div}}(f)$ to 0 for every $f \in \mathbb{Q}(\mathcal{X})$ (product formula),
- sends effective arithmetic divisors to $\mathbb{R}_{\geq 0}$ (non-negativity of the measure),
- sends $(\operatorname{div}(2), 0)$ to $\log (2)$ (extending $\mathbb{Q}[1])$.

Comparison

Definition

Let $I: \operatorname{ADiv}(\mathbb{Q}(\mathcal{X})) \rightarrow \mathbb{R}$ be a linear map over \mathbb{R}. It is called a normalised GVF functional if it:

- sends $\widehat{\operatorname{div}}(f)$ to 0 for every $f \in \mathbb{Q}(\mathcal{X})$ (product formula),
- sends effective arithmetic divisors to $\mathbb{R}_{\geq 0}$ (non-negativity of the measure),
- sends $(\operatorname{div}(2), 0)$ to $\log (2)$ (extending $\mathbb{Q}[1])$.

Theorem (Sz.)

There is a bijection between GVF structures on $\mathbb{Q}(\mathcal{X})$ extending $\mathbb{Q}[1]$ and normalised GVF functionals on $\operatorname{ADiv}(\mathbb{Q}(\mathcal{X}))$ given by

$$
I(\overline{\mathcal{D}})=R_{t}(\bar{a}) \text { for } \overline{\mathcal{D}}=t(\widehat{\operatorname{div}}(\bar{a}))
$$

Arithmetic intersection theory

The height is a part of more general family of intersection theoretic invariants. Namely if $\overline{\mathcal{D}}_{0}, \ldots, \overline{\mathcal{D}}_{k}$ are adelic divisors on \mathcal{X} and $\mathcal{Z} \subset \mathcal{X}$ is a $k+1$-dimensional subvariety, then one can define

$$
\widehat{\operatorname{deg}}\left(\overline{\mathcal{D}}_{0}, \ldots, \overline{\mathcal{D}}_{k} \mid \mathcal{Z}\right) \in \mathbb{R}
$$

Arithmetic intersection theory

The height is a part of more general family of intersection theoretic invariants. Namely if $\overline{\mathcal{D}}_{0}, \ldots, \overline{\mathcal{D}}_{k}$ are adelic divisors on \mathcal{X} and $\mathcal{Z} \subset \mathcal{X}$ is a $k+1$-dimensional subvariety, then one can define

$$
\widehat{\operatorname{deg}}\left(\overline{\mathcal{D}}_{0}, \ldots, \overline{\mathcal{D}}_{k} \mid \mathcal{Z}\right) \in \mathbb{R}
$$

Then

$$
h_{\overline{\mathcal{D}}}(x)=\frac{\widehat{\operatorname{deg}}(\overline{\mathcal{D}} \mid \overline{\{x\}})}{[\kappa(x): \mathbb{Q}]} .
$$

Arithmetic intersection theory

The height is a part of more general family of intersection theoretic invariants. Namely if $\overline{\mathcal{D}}_{0}, \ldots, \overline{\mathcal{D}}_{k}$ are adelic divisors on \mathcal{X} and $\mathcal{Z} \subset \mathcal{X}$ is a $k+1$-dimensional subvariety, then one can define

$$
\widehat{\operatorname{deg}}\left(\overline{\mathcal{D}}_{0}, \ldots, \overline{\mathcal{D}}_{k} \mid \mathcal{Z}\right) \in \mathbb{R}
$$

Then

$$
h_{\overline{\mathcal{D}}}(x)=\frac{\widehat{\operatorname{deg}}(\overline{\mathcal{D}} \mid \overline{\{x\}})}{[\kappa(x): \mathbb{Q}]} .
$$

The arithmetic degree is multilinear and defined inductively by the following formula.

Arithmetic intersection theory continued

Write $\mathcal{D}_{k} \cap \mathcal{Z}=\sum_{i} a_{i} \mathcal{W}_{i}$ as a cycle. Assume that the intersection is transversal. Then

Arithmetic intersection theory continued

Write $\mathcal{D}_{k} \cap \mathcal{Z}=\sum_{i} a_{i} \mathcal{W}_{i}$ as a cycle. Assume that the intersection is transversal. Then

$$
\begin{gathered}
\widehat{\operatorname{deg}}\left(\overline{\mathcal{D}}_{0}, \ldots, \overline{\mathcal{D}}_{k} \mid \mathcal{Z}\right) \\
=\sum_{i} a_{i} \widehat{\operatorname{deg}}\left(\overline{\mathcal{D}}_{0}, \ldots, \overline{\mathcal{D}}_{k-1} \mid \mathcal{W}_{i}\right) \\
+\int_{\mathcal{Z}(\mathbb{C})} g_{\overline{\mathcal{D}}_{k}} c_{1}\left(\overline{\mathcal{D}}_{0}\right) \wedge \cdots \wedge c_{1}\left(\overline{\mathcal{D}}_{k-1}\right) .
\end{gathered}
$$

Arithmetic intersection theory continued

Write $\mathcal{D}_{k} \cap \mathcal{Z}=\sum_{i} a_{i} \mathcal{W}_{i}$ as a cycle. Assume that the intersection is transversal. Then

$$
\begin{gathered}
\widehat{\operatorname{deg}}\left(\overline{\mathcal{D}}_{0}, \ldots, \overline{\mathcal{D}}_{k} \mid \mathcal{Z}\right) \\
=\sum_{i} a_{i} \widehat{\operatorname{deg}}\left(\overline{\mathcal{D}}_{0}, \ldots, \overline{\mathcal{D}}_{k-1} \mid \mathcal{W}_{i}\right) \\
+\int_{\mathcal{Z}(\mathbb{C})} g_{\overline{\mathcal{D}}_{k}} c_{1}\left(\overline{\mathcal{D}}_{0}\right) \wedge \cdots \wedge c_{1}\left(\overline{\mathcal{D}}_{k-1}\right) .
\end{gathered}
$$

If $\operatorname{dim} \mathcal{X}=d+1$ and $\overline{\mathcal{D}}_{0}, \ldots, \overline{\mathcal{D}}_{d}$ are arithmetic divisors on \mathcal{X}, we write $\overline{\mathcal{D}}_{0} \cdot \ldots \cdot \overline{\mathcal{D}}_{d}$ for the intersection product with respect to \mathcal{X}.

Table of Contents

(1) Motivation

(2) Globally Valued Fields
(3) Arakelov geometry
(4) Proof of the main result

The main result

Let $\operatorname{ADiv}(\mathcal{X})$ be the real vector space of arithmetic divisors on \mathcal{X}. The existential closedness of $\overline{\mathbb{Q}}[1]$ translates to the following.

Theorem (Sz.)

Let $\overline{\mathcal{D}}_{1}, \ldots, \overline{\mathcal{D}}_{n}$ be arithmetic divisors on \mathcal{X}. Assume that $I: \operatorname{ADiv}(\mathbb{Q}(\mathcal{X})) \rightarrow \mathbb{R}$ is a normalised $G V F$ functional. Then there is a generic sequence of $\overline{\mathbb{Q}}$-points $x_{n} \in X$ such that for all $i=1, \ldots, n$

$$
\lim _{n} h_{\overline{\mathcal{D}}_{i}}\left(x_{n}\right)=I\left(\overline{\mathcal{D}}_{i}\right) .
$$

If one of $\overline{\mathcal{D}}_{i}$ is big, then / can be only defined on the real span of $\overline{\mathcal{D}}_{i}$'s.

Arithmetic volume

The crucial ingredient of the proof is the arithmetical volume function, i.e.,

$$
\widehat{\operatorname{vol}}(\overline{\mathcal{D}}):=\lim _{n} \sup \frac{\log \# \widehat{H}^{0}(n \overline{\mathcal{D}})}{n^{d+1} /(d+1)!},
$$

where $\widehat{H}^{0}(n \overline{\mathcal{D}})$ is the set of effective arithmetic divisors rationally equivalent to $n \overline{\mathcal{D}}$ (i.e. their difference is spanned by $\widehat{\operatorname{div}}(f)$'s).

Arithmetic volume

The crucial ingredient of the proof is the arithmetical volume function, i.e.,

$$
\widehat{\operatorname{vol}(\overline{\mathcal{D}})}:=\limsup _{n} \frac{\log \# \widehat{H}^{0}(n \overline{\mathcal{D}})}{n^{d+1} /(d+1)!},
$$

where $\widehat{H}^{0}(n \overline{\mathcal{D}})$ is the set of effective arithmetic divisors rationally equivalent to $n \overline{\mathcal{D}}$ (i.e. their difference is spanned by $\widehat{\operatorname{div}}(f)$'s).

It measures how big values of $h_{\overline{\mathcal{D}}}$ are expected to be. We call $\overline{\mathcal{D}}$ big, if $\widehat{\operatorname{vol}}(\overline{\mathcal{D}})>0$.

Arithmetic volume

The crucial ingredient of the proof is the arithmetical volume function, i.e.,
where $\widehat{H}^{0}(n \overline{\mathcal{D}})$ is the set of effective arithmetic divisors rationally equivalent to $n \overline{\mathcal{D}}$ (i.e. their difference is spanned by $\widehat{\operatorname{div}}(f)$'s).

It measures how big values of $h_{\overline{\mathcal{D}}}$ are expected to be. We call $\overline{\mathcal{D}}$ big, if $\widehat{\operatorname{vol}}(\overline{\mathcal{D}})>0$.

If $\overline{\mathcal{D}}$ is big, then vol has directional derivatives at every direction at $\overline{\mathcal{D}}$ by [Che11]. Also, arithmetic volume is $(d+1)$-homogeneous, i.e., $\widehat{\operatorname{vol}}(n \overline{\mathcal{D}})=n^{d+1} \widehat{\operatorname{vol}}(\overline{\mathcal{D}})$.

Arithmetic volume

The crucial ingredient of the proof is the arithmetical volume function, i.e.,

$$
\widehat{\operatorname{vol}}(\overline{\mathcal{D}}):=\lim _{n} \sup \frac{\log \# \widehat{H}^{0}(n \overline{\mathcal{D}})}{n^{d+1} /(d+1)!},
$$

where $\widehat{H}^{0}(n \overline{\mathcal{D}})$ is the set of effective arithmetic divisors rationally equivalent to $n \overline{\mathcal{D}}$ (i.e. their difference is spanned by $\widehat{\operatorname{div}}(f)$'s).

It measures how big values of $h_{\overline{\mathcal{D}}}$ are expected to be. We call $\overline{\mathcal{D}}$ big, if $\widehat{\operatorname{vol}}(\overline{\mathcal{D}})>0$.

If $\overline{\mathcal{D}}$ is big, then vol has directional derivatives at every direction at $\overline{\mathcal{D}}$ by [Che11]. Also, arithmetic volume is $(d+1)$-homogeneous, i.e., $\widehat{\operatorname{vol}}(n \overline{\mathcal{D}})=n^{d+1} \widehat{\operatorname{vol}}(\overline{\mathcal{D}})$.
 intersection product).

Proof sketch

Assume that V is $\operatorname{Span}\left(\overline{\mathcal{D}}_{1}, \ldots, \overline{\mathcal{D}}_{n}\right)$ divided by rational equivalence and consider $I: V \rightarrow \mathbb{R}$. Fix $\varepsilon>0$. The proof follows the following steps:

- Perturb / by less than ε so that it is strictly positive on all big $\overline{\mathcal{D}} \in V$.

Proof sketch

Assume that V is $\operatorname{Span}\left(\overline{\mathcal{D}}_{1}, \ldots, \overline{\mathcal{D}}_{n}\right)$ divided by rational equivalence and consider $I: V \rightarrow \mathbb{R}$. Fix $\varepsilon>0$. The proof follows the following steps:

- Perturb / by less than ε so that it is strictly positive on all big $\overline{\mathcal{D}} \in V$.
- Consider the function $\frac{\widehat{\mathrm{vol}}^{1 / d+1}}{1}$. It is well defined on $V \backslash\{0\}$ by the first point and it is determined by its values on the unit sphere in V by homogeneity. At the maximum on the sphere, the derivatives of $\widehat{\mathrm{vol}}^{1 / d+1}$ and / coincide.

Proof sketch

Assume that V is $\operatorname{Span}\left(\overline{\mathcal{D}}_{1}, \ldots, \overline{\mathcal{D}}_{n}\right)$ divided by rational equivalence and consider $I: V \rightarrow \mathbb{R}$. Fix $\varepsilon>0$. The proof follows the following steps:

- Perturb / by less than ε so that it is strictly positive on all big $\overline{\mathcal{D}} \in V$.
- Consider the function $\frac{\widehat{\mathrm{vol}}^{1 / d+1}}{I}$. It is well defined on $V \backslash\{0\}$ by the first point and it is determined by its values on the unit sphere in V by homogeneity. At the maximum on the sphere, the derivatives of $\widehat{\mathrm{vol}}^{1 / d+1}$ and $/$ coincide.
- We get that up to (multiplicative) constant $D_{\overline{\mathcal{D}}} \widehat{\mathrm{vol}}=I$. But $D_{\overline{\mathcal{D}}}\left(\overline{\mathcal{D}}^{d+1}\right)(\overline{\mathcal{M}})=(d+1) \overline{\mathcal{D}}^{d} \cdot \overline{\mathcal{M}}$. This means that up to a constant I is given by multiplication with $\overline{\mathcal{D}}^{d}$.

Proof sketch

Assume that V is $\operatorname{Span}\left(\overline{\mathcal{D}}_{1}, \ldots, \overline{\mathcal{D}}_{n}\right)$ divided by rational equivalence and consider $I: V \rightarrow \mathbb{R}$. Fix $\varepsilon>0$. The proof follows the following steps:

- Perturb / by less than ε so that it is strictly positive on all big $\overline{\mathcal{D}} \in V$.
- Consider the function $\frac{\widehat{\mathrm{vol}}^{1 / d+1}}{1}$. It is well defined on $V \backslash\{0\}$ by the first point and it is determined by its values on the unit sphere in V by homogeneity. At the maximum on the sphere, the derivatives of $\widehat{\mathrm{vol}}^{1 / d+1}$ and / coincide.
- We get that up to (multiplicative) constant $D_{\overline{\mathcal{D}}} \widehat{\mathrm{vol}}=I$. But $D_{\overline{\mathcal{D}}}\left(\overline{\mathcal{D}}^{d+1}\right)(\overline{\mathcal{M}})=(d+1) \overline{\mathcal{D}}^{d} \cdot \overline{\mathcal{M}}$. This means that up to a constant I is given by multiplication with $\overline{\mathcal{D}}^{d}$.
- Use arithmetic Bertini Theorems [Cha17], [Wil22] to pick d sections of powers of $\overline{\mathcal{D}}$ whose intersection is an irreducible curve in \mathcal{X}.

Proof sketch

Assume that V is $\operatorname{Span}\left(\overline{\mathcal{D}}_{1}, \ldots, \overline{\mathcal{D}}_{n}\right)$ divided by rational equivalence and consider $I: V \rightarrow \mathbb{R}$. Fix $\varepsilon>0$. The proof follows the following steps:

- Perturb / by less than ε so that it is strictly positive on all big $\overline{\mathcal{D}} \in V$.
- Consider the function $\frac{\widehat{\mathrm{vol}}^{1 / d+1}}{1}$. It is well defined on $V \backslash\{0\}$ by the first point and it is determined by its values on the unit sphere in V by homogeneity. At the maximum on the sphere, the derivatives of $\widehat{\mathrm{vol}}^{1 / d+1}$ and / coincide.
- We get that up to (multiplicative) constant $D_{\overline{\mathcal{D}}} \widehat{\mathrm{vol}}=I$. But $D_{\overline{\mathcal{D}}}\left(\overline{\mathcal{D}}^{d+1}\right)(\overline{\mathcal{M}})=(d+1) \overline{\mathcal{D}}^{d} \cdot \overline{\mathcal{M}}$. This means that up to a constant I is given by multiplication with $\overline{\mathcal{D}}^{d}$.
- Use arithmetic Bertini Theorems [Cha17], [Wil22] to pick d sections of powers of $\overline{\mathcal{D}}$ whose intersection is an irreducible curve in \mathcal{X}.
- Let $x \in X(\overline{\mathbb{Q}})$ be the generic point of that curve. By the assumptions of the theorem we can deal with multiplicative constant and x works!

Arithmetic Bertini theorem

The crucial step is passing from the equation $\overline{\mathcal{D}}^{d} \cdot(-)=I(-)$ to the existence of a point x such that $h_{(-)}(x) \approx I(-)$.

Arithmetic Bertini theorem

The crucial step is passing from the equation $\overline{\mathcal{D}}^{d} \cdot(-)=I(-)$ to the existence of a point x such that $h_{(-)}(x) \approx I(-)$.
Assume $\overline{\mathcal{D}}$ is arithmetically ample. The arithmetic Bertini type theorems mentioned before, allow us to find a natural n and an effective $\overline{\mathcal{E}}$ on \mathcal{X} rationally equivalent to $n \overline{\mathcal{D}}$, such that \mathcal{E} is irreducible and generically smooth and

Arithmetic Bertini theorem

The crucial step is passing from the equation $\overline{\mathcal{D}}^{d} \cdot(-)=I(-)$ to the existence of a point x such that $h_{(-)}(x) \approx I(-)$.
Assume $\overline{\mathcal{D}}$ is arithmetically ample. The arithmetic Bertini type theorems mentioned before, allow us to find a natural n and an effective $\overline{\mathcal{E}}$ on \mathcal{X} rationally equivalent to $n \overline{\mathcal{D}}$, such that \mathcal{E} is irreducible and generically smooth and

$$
\begin{gathered}
\overline{\mathcal{M}} \cdot n \overline{\mathcal{D}}^{d}=\widehat{\operatorname{deg}}\left(\overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d-1} \mid \mathcal{E}\right) \\
+\int_{\mathcal{X}(\mathbb{C})} g_{\overline{\mathcal{E}}} \cdot c_{1}(\overline{\mathcal{M}}) \wedge c_{1}(\overline{\mathcal{D}})^{\wedge(d-1)} \\
\approx \widehat{\operatorname{deg}}\left(\overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d-1} \mid \mathcal{E}\right) .
\end{gathered}
$$

Arithmetic Bertini theorem

The crucial step is passing from the equation $\overline{\mathcal{D}}^{d} \cdot(-)=I(-)$ to the existence of a point x such that $h_{(-)}(x) \approx I(-)$.
Assume $\overline{\mathcal{D}}$ is arithmetically ample. The arithmetic Bertini type theorems mentioned before, allow us to find a natural n and an effective $\overline{\mathcal{E}}$ on \mathcal{X} rationally equivalent to $n \overline{\mathcal{D}}$, such that \mathcal{E} is irreducible and generically smooth and

$$
\begin{aligned}
& \overline{\mathcal{M}} \cdot n \overline{\mathcal{D}}^{d}=\widehat{\operatorname{deg}}\left(\overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d-1} \mid \mathcal{E}\right) \\
& +\int_{\mathcal{X}(\mathbb{C})} g_{\overline{\mathcal{E}}} \cdot c_{1}(\overline{\mathcal{M}}) \wedge c_{1}(\overline{\mathcal{D}})^{\wedge(d-1)} \\
& \approx \widehat{\operatorname{deg}}\left(\overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d-1} \mid \mathcal{E}\right) .
\end{aligned}
$$

The point it that we can neglect the integral part coming from $g_{\overline{\mathcal{E}}}$.

The last step

By repeating this procedure (in the second step we replace \mathcal{X} with \mathcal{E} of codimension one in \mathcal{X}) we get

The last step

By repeating this procedure (in the second step we replace \mathcal{X} with \mathcal{E} of codimension one in \mathcal{X}) we get

$$
\begin{aligned}
n_{1} \ldots n_{d} \cdot \overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d} & \approx n_{2} \ldots n_{d} \cdot \widehat{\operatorname{deg}}\left(\overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d-1} \mid \mathcal{E}\right) \\
& \approx \ldots \approx \widehat{\operatorname{deg}}(\overline{\mathcal{M}} \mid \mathcal{C}),
\end{aligned}
$$

The last step

By repeating this procedure (in the second step we replace \mathcal{X} with \mathcal{E} of codimension one in \mathcal{X}) we get

$$
\begin{aligned}
n_{1} \ldots n_{d} \cdot \overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d} & \approx n_{2} \ldots n_{d} \cdot \widehat{\operatorname{deg}}\left(\overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d-1} \mid \mathcal{E}\right) \\
& \approx \ldots \approx \widehat{\operatorname{deg}}(\overline{\mathcal{M}} \mid \mathcal{C})
\end{aligned}
$$

for some irreducible (generically smooth) curve \mathcal{C} in \mathcal{X}.

The last step

By repeating this procedure (in the second step we replace \mathcal{X} with \mathcal{E} of codimension one in \mathcal{X}) we get

$$
\begin{aligned}
n_{1} \ldots n_{d} \cdot \overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d} & \approx n_{2} \ldots n_{d} \cdot \widehat{\operatorname{deg}}\left(\overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d-1} \mid \mathcal{E}\right) \\
& \approx \ldots \approx \widehat{\operatorname{deg}}(\overline{\mathcal{M}} \mid \mathcal{C}),
\end{aligned}
$$

for some irreducible (generically smooth) curve \mathcal{C} in \mathcal{X}. The generic point $x \in \mathcal{X}(\overline{\mathbb{Q}})$ then satisfies (up to a multiplicative constant that one can show is 1 by normalisation (*)):

The last step

By repeating this procedure (in the second step we replace \mathcal{X} with \mathcal{E} of codimension one in \mathcal{X}) we get

$$
\begin{aligned}
n_{1} \ldots n_{d} \cdot \overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d} & \approx n_{2} \ldots n_{d} \cdot \widehat{\operatorname{deg}}\left(\overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d-1} \mid \mathcal{E}\right) \\
& \approx \ldots \approx \widehat{\operatorname{deg}}(\overline{\mathcal{M}} \mid \mathcal{C}),
\end{aligned}
$$

for some irreducible (generically smooth) curve \mathcal{C} in \mathcal{X}.
The generic point $x \in \mathcal{X}(\overline{\mathbb{Q}})$ then satisfies (up to a multiplicative constant that one can show is 1 by normalisation (*)):

$$
h_{\overline{\mathcal{M}}}(x) \approx \frac{\widehat{\operatorname{deg}}(\overline{\mathcal{M}} \mid \mathcal{C})}{n_{1} \ldots n_{d}} \approx \overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d} \approx I(\overline{\mathcal{M}})
$$

The last step

By repeating this procedure (in the second step we replace \mathcal{X} with \mathcal{E} of codimension one in \mathcal{X}) we get

$$
\begin{aligned}
n_{1} \ldots n_{d} \cdot \overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d} & \approx n_{2} \ldots n_{d} \cdot \widehat{\operatorname{deg}}\left(\overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d-1} \mid \mathcal{E}\right) \\
& \approx \ldots \approx \widehat{\operatorname{deg}}(\overline{\mathcal{M}} \mid \mathcal{C}),
\end{aligned}
$$

for some irreducible (generically smooth) curve \mathcal{C} in \mathcal{X}.
The generic point $x \in \mathcal{X}(\overline{\mathbb{Q}})$ then satisfies (up to a multiplicative constant that one can show is 1 by normalisation (*)):

$$
h_{\overline{\mathcal{M}}}(x) \approx \frac{\widehat{\operatorname{deg}}(\overline{\mathcal{M}} \mid \mathcal{C})}{n_{1} \ldots n_{d}} \approx \overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d} \approx I(\overline{\mathcal{M}})
$$

(*) Some (multiplicative) constants are skipped in this sketch, for the simpler exposition!

Thank you!

Bibliography I

[Ben08] Itaï Ben Yaacov. "Continuous first order logic for unbounded metric structures". In: Journal of Mathematical Logic 08.02 (Dec. 2008), pp. 197-223.
[BH21] Itaï Ben Yaacov and Ehud Hrushovski. "Globally valued fields (GVF3)". In: unpublished notes (2021).
[BH22] Itaï Ben Yaacov and Ehud Hrushovski. "Globally valued function fields: existential closure (GVF2)". In: arXiv:2212.07269v1 (2022).
[Cha17] François Charles. "Arithmetic ampleness and an arithmetic Bertini theorem". In: Annales scientifiques de l'École Normale Supérieure 54 (Mar. 2017). DOI: 10.24033/asens. 2488.

Bibliography II

[Che11] Huayi Chen. "Differentiability of the arithmetic volume function". In: Journal of the London Mathematical Society 84.2 (July 2011), pp. 365-384. ISSN: 0024-6107. DOI:
10.1112/jlms/jdr011. URL:
https://doi.org/10.1112/jlms/jdr011.
[Wil22] Robert Wilms. "On the Irreducibility and Distribution of Arithmetic Divisors". In: arXiv:2211.03766v1 (2022).

