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Height on Q

For a rational number q = a
b ∈ Q× presented in a coprime way its height

is by definition the real number ht(q) = logmax(|a|, |b|).

It measures complexity of a number.
One can define it without referring to a presentation as a quotient of two
integers. Note that

ht(q) =
∑

p: prime

max(ordp(q), 0) log p +max(− log |q|, 0).

Example

ht(23) = max(ord2(
2
3), 0) log 2 +max(ord3(

2
3), 0) log 3 +max(− log 2

3 , 0)) =
log 2 + log 3

2 = log 3.
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Height on Q
For q ∈ Q×

one defines the Weil logarithmic height by

ht(q) =
1

[K : Q]

( ∑
p: prime in OK

max(ordp(q), 0) log#κ(p)

+
∑

σ:K→C

max(− log |σ(q)|, 0)
)

Here (and in the rest of this presentation) K is any number field with
q ∈ K and ht(q) does not depend on the choice of such K .
Let ValK be a set of valuations (both non-Archimedean and Archimedean,
i.e., minus logarithms of norms coming from embeddings into C) on K .
Let µ be the discrete measure

µ :=
1

[K : Q]

( ∑
p∈Spec(OK )

δordp · log#κ(p) +
∑

σ:K→C

δ− log |σ(−)|

)
.
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Height on Q continued

Then for q ∈ K we can simple write

ht(q) =

∫
ValK

max(v(q), 0)dµ(v).

Similarly, for a point x = [x0 : · · · : xn] ∈ Pn(K ) ⊂ Pn(Q), we can define

ht(x) =

∫
ValK

max
i
(v(xi ))dµ(v).

It does not depend on the choice of coordinates for x because of the
following.

Projection formula ∫
ValK

v(q)dµ(v) = 0.
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Classical applications

These heights are useful in many situations such as the following.

Mordell–Weil theorem

Let E be an elliptic curve (or an abelian variety) over K . Then E (K ) is a
finitely generated abelian group.

Faltings theorem

Let C be a genus g > 1 curve over K . Then C (K ) is finite.

However, in these theorems the degree is bounded/the number field is
fixed.
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The structures

Definition [BH22]

A GVF is a field F together with a (class of) measure µ on the space of
“valuations” ValF which satisfies the product formula, i.e.,∫

ValF

v(a)dµ(v) = 0 for all a ∈ F×.

One can see these structures as models of an unbounded continuous
theory (in the sense of [Ben08]) in the following way.
Let t be a Q-tropical polynomial, i.e., a term in the language
+,min, 0, (q·)q∈Q. For example t(x , y) = max(x ,max(x + y , y + 3)).
We define

Rt(a, b) :=

∫
ValF

t(v(a), v(b))dµ(v).

One can write universal axioms on Rt ’s, so that a field equipped with
predicates satisfying these axioms comes from a measure as above.
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Examples

For a ∈ F× we define its height (with respect to some GVF structure)
ht(a) =

∫
ValF

max(v(a), 0)dµ(v). Here are a few GVFs:

Q with the predicates defined as Weil logarithmic heights. It is
denoted Q[1] (if we multiply all predicates by r > 0 we get Q[r ]).

If (Ki )i∈I we can take ultraproduct which by definition consists of
classes of sequences with bounded height.

For any field k we can equip k(t) with a unique GVF structure where
the measure concentrates on valuations trivial on k and ht(t) = 1. In
[BH21] it is shown that k(t) is existentially closed, i.e., whenever
k(t) ⊂ F is a GVF extension, then F embeds into some ultrapower of
k(t) over k(t).

If X is a variety over k, a movable curve (or dimX − 1 ample divisors
D1, . . . ) induces a GVF structure on k(X ). Moreover, the space of
GVF structures on k(X ) is homeomorphic to lim←−N+

1 (X ′) for the
system of blowups X ′ → X .
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Arithmetic example

Bilu equidistribution

Let an ∈ Q×
be a sequence with deg(an)→∞ and ht(an)→ 0. Define

measures

µn :=
1

deg(an)

∑
x∈G ·an

δx ,

where G = Gal(Q/Q) and δx is the Dirac delta at x . Then µn weakly
converge to the Lebesgue measure on the unit circle in C.

From the point of view of GVFs this follows from the following fact.

[BH21, Lemma 6.5]

There is a unique GVF structure on Q(x) extending Q[1] with ht(x) = 0.

More precisely, the measure µ defining restriction of such GVF structure to
Q(x), if restricted to the set of complex places of Q(x), is the Lebesgue
measure on the unit circle in C.
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Existential closeness of Q[1]

Theorem (Sz.)

Q[1] is an existentially closed GVF.

It is equivalent to the following statement:

Corollary

Assume that X is an affine variety over Q and assume that we are given
morphisms f1, . . . , fn : X → Am. Equip F = Q(X ) = Q(a) with a GVF
structure and denote Rti (fi (a)) = ri for some Q-tropical polynomials
t1, . . . , tn.
Let ε > 0. Then we can find a (sufficiently generic) x ∈ X (Q) such that
for all i = 1, . . . , n we have

|Rti (fi (a|x))− ri | < ε.
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Applications

The existential closedness of Q can be used in the following situations.

A direct application is an L1 Fekete-Szegő type result for varieties of
arbitrary dimension, i.e., [BH22, Theorem 3.11] for number fields.

It yields an alternative definition of the arithmetic essential infimum
function.

(in progress) The existential closedness of C(t) from [BH22, Theorem
2.1] and its proof can be used to derive some version of
non-Archimedean Calabi-Yau theorem. What about the Q case?

(in progress) If E is an elliptic curve can one find optimal bounds on
ht((2P)x)− 4 ht(Px) by finding a GVF measure on the function field
Q(E )? More general questions about extremes of heights...
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Arithmetic divisors

The proof of e.c. of Q[1] uses Arakelov geometry, which gives a more
conceptual understanding of predicates Rt(f (−)).

Let X be a (smooth) variety over Q and let X be a Z-model of X , i.e., a
projective (normal, generically smooth) scheme over Spec(Z) with
X ⊗Q = X .
For example Pn

Z is a Z-model of Pn
Q.

Definition

An arithmetic divisor D = (D, g) on X is a divisor D (linear combination
of codimension one subvarieties) on X together with a Green function
g : (X \ supp(D))an → R.

A function g : (X \ supp(D))an → R is a Green function for D, if for any
open U ⊂ X on which D is given by equation d = 0 the function
g + log |d | extends to a continuous function on the complex analytification
Uan.
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Lattice structure

Example

If f ∈ Q(X ), then one can define d̂iv(f ) = (div(f ),−log |f |).

Let D, E be adelic divisors on X with D, E effective. If D ∩ E is a (Cartier)
divisor, one defines:

D ∧ E := (D ∩ E ,min(gD, gE)).

If the intersection is not a divisor, one can pass to to a blowup X ′ → X to
ensure that it is the case. The function field Q(X ′) = Q(X ) = Q(X ) stays
the same.
We can form (modulo technicalities) a real vector space of adelic divisors
on blowups of X denoted by ADiv(Q(X )). It has lattice operations ∧,∨.
By definition D ∨ E := −((−D)∧ (−E)) and D is called effective (D ≥ 0),
if D ∨ 0 = D.
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Height with respect to an adelic divisor

Definition

If D is an adelic divisor on X (with D effective) and x ∈ X (Q) we define
the height hD(x) as the number

hD(x) :=
1

[κ(x) : Q]

(
log#(OC(D)/OC) +

∑
σ:κ(x)→C

g(xσ)
)
,

where C is the closure of {x} in X .

Fact

Let D = t(d̂iv(a)) for some a ∈ Q(X ) and a Q-tropical polynomial t. Pick
x ∈ X (Q) such that x ̸∈ supp(D). Then in Q[1]

hD(x) = Rt(a|x).
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Comparison

Definition

Let l : ADiv(Q(X ))→ R be a linear map over R. It is called a normalised
GVF functional if it:

sends d̂iv(f ) to 0 for every f ∈ Q(X ) (product formula),

sends effective arithmetic divisors to R≥0 (non-negativity of the
measure),

sends (div(2), 0) to log(2) (extending Q[1]).

Theorem (Sz.)

There is a bijection between GVF structures on Q(X ) extending Q[1] and
normalised GVF functionals on ADiv(Q(X )) given by

l(D) = Rt(a) for D = t(d̂iv(a)).
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Arithmetic intersection theory

The height is a part of more general family of intersection theoretic
invariants. Namely if D0, . . . ,Dk are adelic divisors on X and Z ⊂ X is a
k + 1-dimensional subvariety, then one can define

d̂eg(D0, . . . ,Dk |Z) ∈ R.

Then

hD(x) =
d̂eg(D|{x})
[κ(x) : Q]

.

The arithmetic degree is multilinear and defined inductively by the
following formula.
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Arithmetic intersection theory continued

Write Dk ∩ Z =
∑

i aiWi as a cycle. Assume that the intersection is
transversal. Then

d̂eg(D0, . . . ,Dk |Z)

=
∑
i

ai d̂eg(D0, . . . ,Dk−1|Wi )

+

∫
Z(C)

gDk
c1(D0) ∧ · · · ∧ c1(Dk−1).

If dimX = d + 1 and D0, . . . ,Dd are arithmetic divisors on X , we write
D0 · . . . · Dd for the intersection product with respect to X .
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The main result

Let ADiv(X ) be the real vector space of arithmetic divisors on X .The
existential closedness of Q[1] translates to the following.

Theorem (Sz.)

Let D1, . . . ,Dn be arithmetic divisors on X . Assume that
l : ADiv(Q(X ))→ R is a normalised GVF functional. Then there is a
generic sequence of Q-points xn ∈ X such that for all i = 1, . . . , n

lim
n

hDi
(xn) = l(Di ).

If one of Di is big, then l can be only defined on the real span of Di ’s.

Szachniewicz (Ox) e.c. of Q as a GVF May 2023 22 / 29



Arithmetic volume

The crucial ingredient of the proof is the arithmetical volume function, i.e.,

v̂ol(D) := lim sup
n

log#Ĥ0(nD)
nd+1/(d + 1)!

,

where Ĥ0(nD) is the set of effective arithmetic divisors rationally

equivalent to nD (i.e. their difference is spanned by d̂iv(f )’s).

It measures how big values of hD are expected to be. We call D big, if

v̂ol(D) > 0.

If D is big, then v̂ol has directional derivatives at every direction at D by
[Che11]. Also, arithmetic volume is (d + 1)-homogeneous, i.e.,

v̂ol(nD) = nd+1v̂ol(D).

Moreover, if D is arithmetically ample, then v̂ol(D) = Dd+1
(arithmetic

intersection product).
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Proof sketch

Assume that V is Span(D1, . . . ,Dn) divided by rational equivalence and
consider l : V → R. Fix ε > 0. The proof follows the following steps:

Perturb l by less than ε so that it is strictly positive on all big D ∈ V .

Consider the function v̂ol
1/d+1

l . It is well defined on V \ {0} by the
first point and it is determined by its values on the unit sphere in V
by homogeneity. At the maximum on the sphere, the derivatives of

v̂ol
1/d+1

and l coincide.

We get that up to (multiplicative) constant DDv̂ol = l . But

DD(D
d+1

)(M) = (d + 1)Dd · M. This means that up to a constant

l is given by multiplication with Dd
.

Use arithmetic Bertini Theorems [Cha17], [Wil22] to pick d sections
of powers of D whose intersection is an irreducible curve in X .
Let x ∈ X (Q) be the generic point of that curve. By the assumptions
of the theorem we can deal with multiplicative constant and x works!
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Arithmetic Bertini theorem

The crucial step is passing from the equation Dd · (−) = l(−) to the
existence of a point x such that h(−)(x) ≈ l(−).

Assume D is arithmetically ample. The arithmetic Bertini type theorems
mentioned before, allow us to find a natural n and an effective E on X
rationally equivalent to nD, such that E is irreducible and generically
smooth and

M · nDd
= d̂eg(M ·Dd−1|E)

+

∫
X (C)

gE · c1(M) ∧ c1(D)∧(d−1)

≈ d̂eg(M ·Dd−1|E).

The point it that we can neglect the integral part coming from gE .
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The last step

By repeating this procedure (in the second step we replace X with E of
codimension one in X ) we get

n1 . . . nd · M · D
d ≈ n2 . . . nd · d̂eg(M ·D

d−1|E)

≈ . . . ≈ d̂eg(M|C),

for some irreducible (generically smooth) curve C in X .
The generic point x ∈ X (Q) then satisfies (up to a multiplicative constant
that one can show is 1 by normalisation (*)):

hM(x) ≈ d̂eg(M|C)
n1 . . . nd

≈M · Dd ≈ l(M).

(*) Some (multiplicative) constants are skipped in this sketch, for the
simpler exposition!
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Thank you!
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