Existential closedness of $\overline{\mathbb{Q}}$ as a globally valued field

M. Szachniewicz¹

¹Mathematical Institute University of Oxford

Luminy, May 2023

e.c. of $\overline{\mathbb{Q}}$ as a GVF

- 2 Globally Valued Fields
- 3 Arakelov geometry
- Proof of the main result

- 2 Globally Valued Fields
- 3 Arakelov geometry
- 4 Proof of the main result

Height on ${\mathbb Q}$

For a rational number $q = \frac{a}{b} \in \mathbb{Q}^{\times}$ presented in a coprime way its *height* is by definition the real number $ht(q) = \log max(|a|, |b|)$.

Height on ${\mathbb Q}$

For a rational number $q = \frac{a}{b} \in \mathbb{Q}^{\times}$ presented in a coprime way its *height* is by definition the real number $ht(q) = \log max(|a|, |b|)$. It measures complexity of a number.

For a rational number $q = \frac{a}{b} \in \mathbb{Q}^{\times}$ presented in a coprime way its *height* is by definition the real number $ht(q) = \log max(|a|, |b|)$. It measures complexity of a number.

One can define it without referring to a presentation as a quotient of two integers. Note that

$$\mathsf{ht}(q) = \sum_{p: \; \mathsf{prime}} \mathsf{max}(\mathsf{ord}_p(q), 0) \log p + \mathsf{max}(-\log |q|, 0).$$

For a rational number $q = \frac{a}{b} \in \mathbb{Q}^{\times}$ presented in a coprime way its *height* is by definition the real number $ht(q) = \log max(|a|, |b|)$. It measures complexity of a number.

One can define it without referring to a presentation as a quotient of two integers. Note that

$$\operatorname{ht}(q) = \sum_{p: \text{ prime}} \max(\operatorname{ord}_p(q), 0) \log p + \max(-\log |q|, 0).$$

Example

 $\begin{array}{l} \mathsf{ht}(\frac{2}{3}) = \mathsf{max}(\mathsf{ord}_2(\frac{2}{3}), 0) \log 2 + \mathsf{max}(\mathsf{ord}_3(\frac{2}{3}), 0) \log 3 + \mathsf{max}(-\log \frac{2}{3}, 0)) = \\ \log 2 + \log \frac{3}{2} = \log 3. \end{array}$

Height on $\overline{\mathbb{Q}}$

For $q \in \overline{\mathbb{Q}}^{\times}$ one defines the *Weil logarithmic height* by

$$\begin{split} \mathsf{ht}(q) &= \frac{1}{[\mathcal{K}:\mathbb{Q}]} \bigg(\sum_{p: \text{ prime in } \mathcal{O}_{\mathcal{K}}} \mathsf{max}(\mathsf{ord}_p(q), 0) \log \# \kappa(p) \\ &+ \sum_{\sigma: \mathcal{K} \to \mathbb{C}} \mathsf{max}(-\log |\sigma(q)|, 0) \bigg) \end{split}$$

Image: A matrix

æ

Height on $\overline{\mathbb{Q}}$

For $q \in \overline{\mathbb{Q}}^{\times}$ one defines the *Weil logarithmic height* by

$$\begin{split} \mathsf{ht}(q) &= \frac{1}{[\mathcal{K}:\mathbb{Q}]} \bigg(\sum_{p: \text{ prime in } \mathcal{O}_{\mathcal{K}}} \mathsf{max}(\mathsf{ord}_p(q), 0) \log \# \kappa(p) \\ &+ \sum_{\sigma: \mathcal{K} \to \mathbb{C}} \mathsf{max}(-\log |\sigma(q)|, 0) \bigg) \end{split}$$

Here (and in the rest of this presentation) K is any number field with $q \in K$ and ht(q) does not depend on the choice of such K.

Height on $\overline{\mathbb{Q}}$

For $q \in \overline{\mathbb{Q}}^{\times}$ one defines the *Weil logarithmic height* by

$$\begin{split} \mathsf{ht}(q) &= \frac{1}{[\mathcal{K}:\mathbb{Q}]} \bigg(\sum_{p: \text{ prime in } \mathcal{O}_{\mathcal{K}}} \mathsf{max}(\mathsf{ord}_p(q), 0) \log \# \kappa(p) \\ &+ \sum_{\sigma: \mathcal{K} \to \mathbb{C}} \mathsf{max}(-\log |\sigma(q)|, 0) \bigg) \end{split}$$

Here (and in the rest of this presentation) K is any number field with $q \in K$ and ht(q) does not depend on the choice of such K. Let Val_K be a set of valuations (both non-Archimedean and Archimedean, i.e., minus logarithms of norms coming from embeddings into \mathbb{C}) on K. Let μ be the discrete measure

$$\mu := \frac{1}{[\mathcal{K}:\mathbb{Q}]} \bigg(\sum_{\boldsymbol{p} \in \operatorname{Spec}(\mathcal{O}_{\mathcal{K}})} \delta_{\operatorname{ord}_{\boldsymbol{p}}} \cdot \log \# \kappa(\boldsymbol{p}) + \sum_{\sigma: \mathcal{K} \to \mathbb{C}} \delta_{-\log |\sigma(-)|} \bigg).$$

Height on $\overline{\mathbb{Q}}$ continued

Then for $q \in K$ we can simple write

$$\operatorname{ht}(q) = \int_{\operatorname{Val}_K} \max(v(q), 0) d\mu(v).$$

э

Height on $\overline{\mathbb{Q}}$ continued

Then for $q \in K$ we can simple write

$$\operatorname{ht}(q) = \int_{\operatorname{Val}_K} \max(v(q), 0) d\mu(v).$$

Similarly, for a point $x = [x_0 : \cdots : x_n] \in \mathbb{P}^n(\mathcal{K}) \subset \mathbb{P}^n(\overline{\mathbb{Q}})$, we can define

$$ht(x) = \int_{Val_K} \max_i (v(x_i)) d\mu(v).$$

Height on $\overline{\mathbb{Q}}$ continued

Then for $q \in K$ we can simple write

$$\operatorname{ht}(q) = \int_{\operatorname{Val}_K} \max(v(q), 0) d\mu(v).$$

Similarly, for a point $x = [x_0 : \cdots : x_n] \in \mathbb{P}^n(\mathcal{K}) \subset \mathbb{P}^n(\overline{\mathbb{Q}})$, we can define

$$ht(x) = \int_{Val_{\kappa}} \max_{i}(v(x_{i}))d\mu(v).$$

It does not depend on the choice of coordinates for x because of the following.

Mordell-Weil theorem

Let E be an elliptic curve (or an abelian variety) over K. Then E(K) is a finitely generated abelian group.

Mordell-Weil theorem

Let E be an elliptic curve (or an abelian variety) over K. Then E(K) is a finitely generated abelian group.

Faltings theorem

Let C be a genus g > 1 curve over K. Then C(K) is finite.

Mordell-Weil theorem

Let E be an elliptic curve (or an abelian variety) over K. Then E(K) is a finitely generated abelian group.

Faltings theorem

Let C be a genus g > 1 curve over K. Then C(K) is finite.

However, in these theorems the degree is bounded/the number field is fixed.

- 3 Arakelov geometry
- Proof of the main result

The structures

Definition [BH22]

A GVF is a field F together with a (class of) measure μ on the space of "valuations" Val_F which satisfies the product formula, i.e.,

$$\int_{\operatorname{Val}_F} v(a) d\mu(v) = 0$$
 for all $a \in F^{ imes}.$

The structures

Definition [BH22]

A GVF is a field F together with a (class of) measure μ on the space of "valuations" Val_F which satisfies the product formula, i.e.,

$$\int_{\operatorname{Val}_F} v(a) d\mu(v) = 0 ext{ for all } a \in F^{ imes}.$$

One can see these structures as models of an unbounded continuous theory (in the sense of [Ben08]) in the following way.

Definition [BH22]

A GVF is a field F together with a (class of) measure μ on the space of "valuations" Val_F which satisfies the product formula, i.e.,

$$\int_{\operatorname{Val}_F} v(a) d\mu(v) = 0 ext{ for all } a \in F^{ imes}.$$

One can see these structures as models of an unbounded continuous theory (in the sense of [Ben08]) in the following way. Let t be a Q-tropical polynomial, i.e., a term in the language $+, \min, 0, (q \cdot)_{q \in \mathbb{Q}}$. For example t(x, y) = max(x, max(x + y, y + 3)).

Definition [BH22]

A GVF is a field F together with a (class of) measure μ on the space of "valuations" Val_F which satisfies the product formula, i.e.,

$$\int_{\operatorname{Val}_F} v(a) d\mu(v) = 0$$
 for all $a \in F^{ imes}$.

One can see these structures as models of an unbounded continuous theory (in the sense of [Ben08]) in the following way. Let t be a \mathbb{Q} -tropical polynomial, i.e., a term in the language $+, \min, 0, (q \cdot)_{q \in \mathbb{Q}}$. For example t(x, y) = max(x, max(x + y, y + 3)). We define

$$R_t(a,b) := \int_{\operatorname{Val}_F} t(v(a),v(b)) d\mu(v).$$

Definition [BH22]

A GVF is a field F together with a (class of) measure μ on the space of "valuations" Val_F which satisfies the product formula, i.e.,

$$\int_{\operatorname{Val}_F} v(a) d\mu(v) = 0 ext{ for all } a \in F^{ imes}.$$

One can see these structures as models of an unbounded continuous theory (in the sense of [Ben08]) in the following way. Let t be a Q-tropical polynomial, i.e., a term in the language $+, \min, 0, (q \cdot)_{q \in \mathbb{Q}}$. For example t(x, y) = max(x, max(x + y, y + 3)). We define

$$R_t(a,b) := \int_{\operatorname{Val}_F} t(v(a),v(b)) d\mu(v).$$

One can write universal axioms on R_t 's, so that a field equipped with predicates satisfying these axioms comes from a measure as above.

For $a \in F^{\times}$ we define its height (with respect to some GVF structure) ht(a) = $\int_{\text{Val}_F} \max(v(a), 0) d\mu(v)$. Here are a few GVFs:

For $a \in F^{\times}$ we define its height (with respect to some GVF structure) ht(a) = $\int_{\text{Val}_F} \max(v(a), 0) d\mu(v)$. Here are a few GVFs:

- Q
 With the predicates defined as Weil logarithmic heights. It is denoted Q
 [1] (if we multiply all predicates by r > 0 we get Q
- If (K_i)_{i∈I} we can take ultraproduct which by definition consists of classes of sequences with bounded height.

For $a \in F^{\times}$ we define its height (with respect to some GVF structure) ht(a) = $\int_{\text{Val}_F} \max(v(a), 0) d\mu(v)$. Here are a few GVFs:

- If (K_i)_{i∈I} we can take ultraproduct which by definition consists of classes of sequences with bounded height.
- For any field k we can equip $\overline{k(t)}$ with a unique GVF structure where the measure concentrates on valuations trivial on k and ht(t) = 1. In [BH21] it is shown that $\overline{k(t)}$ is existentially closed, i.e., whenever $\overline{k(t)} \subset F$ is a GVF extension, then F embeds into some ultrapower of $\overline{k(t)}$ over $\overline{k(t)}$.

For $a \in F^{\times}$ we define its height (with respect to some GVF structure) ht(a) = $\int_{\text{Val}_F} \max(v(a), 0) d\mu(v)$. Here are a few GVFs:

- If (K_i)_{i∈I} we can take ultraproduct which by definition consists of classes of sequences with bounded height.
- For any field k we can equip $\overline{k(t)}$ with a unique GVF structure where the measure concentrates on valuations trivial on k and ht(t) = 1. In [BH21] it is shown that $\overline{k(t)}$ is existentially closed, i.e., whenever $\overline{k(t)} \subset F$ is a GVF extension, then F embeds into some ultrapower of $\overline{k(t)}$ over $\overline{k(t)}$.
- If X is a variety over k, a movable curve (or dim X 1 ample divisors D_1, \ldots) induces a GVF structure on k(X). Moreover, the space of GVF structures on k(X) is homeomorphic to $\varprojlim N_1^+(X')$ for the system of blowups $X' \to X$.

Arithmetic example

Bilu equidistribution

Let $a_n \in \overline{\mathbb{Q}}^{\times}$ be a sequence with $\deg(a_n) \to \infty$ and $\operatorname{ht}(a_n) \to 0$. Define measures

$$\mu_n := \frac{1}{\deg(a_n)} \sum_{x \in G \cdot a_n} \delta_x,$$

where $G = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ and δ_x is the Dirac delta at x. Then μ_n weakly converge to the Lebesgue measure on the unit circle in \mathbb{C} .

Arithmetic example

Bilu equidistribution

Let $a_n \in \overline{\mathbb{Q}}^{\times}$ be a sequence with deg $(a_n) \to \infty$ and ht $(a_n) \to 0$. Define measures

$$\mu_n := \frac{1}{\deg(a_n)} \sum_{x \in G \cdot a_n} \delta_x,$$

where $G = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ and δ_x is the Dirac delta at x. Then μ_n weakly converge to the Lebesgue measure on the unit circle in \mathbb{C} .

From the point of view of GVFs this follows from the following fact.

[BH21, Lemma 6.5]

There is a unique GVF structure on $\overline{\mathbb{Q}}(x)$ extending $\overline{\mathbb{Q}}[1]$ with ht(x) = 0.

Arithmetic example

Bilu equidistribution

Let $a_n \in \overline{\mathbb{Q}}^{\times}$ be a sequence with deg $(a_n) \to \infty$ and ht $(a_n) \to 0$. Define measures

$$\mu_n := \frac{1}{\deg(a_n)} \sum_{x \in G \cdot a_n} \delta_x,$$

where $G = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ and δ_x is the Dirac delta at x. Then μ_n weakly converge to the Lebesgue measure on the unit circle in \mathbb{C} .

From the point of view of GVFs this follows from the following fact.

[BH21, Lemma 6.5]

There is a unique GVF structure on $\overline{\mathbb{Q}}(x)$ extending $\overline{\mathbb{Q}}[1]$ with ht(x) = 0.

More precisely, the measure μ defining restriction of such GVF structure to $\mathbb{Q}(x)$, if restricted to the set of complex places of $\mathbb{Q}(x)$, is the Lebesgue measure on the unit circle in \mathbb{C} .

Szachniewicz (Ox)

e.c. of $\overline{\mathbb{Q}}$ as a GVF

Theorem (Sz.)

 $\overline{\mathbb{Q}}[1]$ is an existentially closed GVF.

.∋...>

< A

æ

Theorem (Sz.)

 $\overline{\mathbb{Q}}[1]$ is an existentially closed GVF.

It is equivalent to the following statement:

Corollary

Assume that X is an affine variety over \mathbb{Q} and assume that we are given morphisms $f_1, \ldots, f_n : X \to \mathbb{A}^m$. Equip $F = \mathbb{Q}(X) = \mathbb{Q}(\overline{a})$ with a GVF structure and denote $R_{t_i}(f_i(\overline{a})) = r_i$ for some \mathbb{Q} -tropical polynomials t_1, \ldots, t_n .

Theorem (Sz.)

 $\overline{\mathbb{Q}}[1]$ is an existentially closed GVF.

It is equivalent to the following statement:

Corollary

Assume that X is an affine variety over \mathbb{Q} and assume that we are given morphisms $f_1, \ldots, f_n : X \to \mathbb{A}^m$. Equip $F = \mathbb{Q}(X) = \mathbb{Q}(\overline{a})$ with a GVF structure and denote $R_{t_i}(f_i(\overline{a})) = r_i$ for some \mathbb{Q} -tropical polynomials t_1, \ldots, t_n . Let $\varepsilon > 0$. Then we can find a (sufficiently generic) $x \in X(\overline{\mathbb{Q}})$ such that for all $i = 1, \ldots, n$ we have

$$|R_{t_i}(f_i(\overline{a}|_{x})) - r_i| < \varepsilon.$$

イロト イヨト イヨト ・

The existential closedness of $\overline{\mathbb{Q}}$ can be used in the following situations.

• A direct application is an L¹ Fekete-Szegő type result for varieties of arbitrary dimension, i.e., [BH22, Theorem 3.11] for number fields.

The existential closedness of $\overline{\mathbb{Q}}$ can be used in the following situations.

- A direct application is an L¹ Fekete-Szegő type result for varieties of arbitrary dimension, i.e., [BH22, Theorem 3.11] for number fields.
- It yields an alternative definition of the arithmetic essential infimum function.

The existential closedness of $\overline{\mathbb{Q}}$ can be used in the following situations.

- A direct application is an L¹ Fekete-Szegő type result for varieties of arbitrary dimension, i.e., [BH22, Theorem 3.11] for number fields.
- It yields an alternative definition of the arithmetic essential infimum function.
- (in progress) The existential closedness of C(t) from [BH22, Theorem 2.1] and its proof can be used to derive some version of non-Archimedean Calabi-Yau theorem. What about the Q case?
The existential closedness of $\overline{\mathbb{Q}}$ can be used in the following situations.

- A direct application is an L¹ Fekete-Szegő type result for varieties of arbitrary dimension, i.e., [BH22, Theorem 3.11] for number fields.
- It yields an alternative definition of the arithmetic essential infimum function.
- (in progress) The existential closedness of C(t) from [BH22, Theorem 2.1] and its proof can be used to derive some version of non-Archimedean Calabi-Yau theorem. What about the Q case?
- (in progress) If E is an elliptic curve can one find optimal bounds on ht((2P)_x) - 4 ht(P_x) by finding a GVF measure on the function field Q(E)? More general questions about extremes of heights...

- 3 Arakelov geometry
- Proof of the main result

The proof of e.c. of $\overline{\mathbb{Q}}[1]$ uses Arakelov geometry, which gives a more conceptual understanding of predicates $R_t(f(-))$.

The proof of e.c. of $\overline{\mathbb{Q}}[1]$ uses Arakelov geometry, which gives a more conceptual understanding of predicates $R_t(f(-))$.

Let X be a (smooth) variety over \mathbb{Q} and let \mathcal{X} be a \mathbb{Z} -model of X, i.e., a projective (normal, generically smooth) scheme over $\text{Spec}(\mathbb{Z})$ with $\mathcal{X} \otimes \mathbb{Q} = X$.

The proof of e.c. of $\overline{\mathbb{Q}}[1]$ uses Arakelov geometry, which gives a more conceptual understanding of predicates $R_t(f(-))$.

Let X be a (smooth) variety over \mathbb{Q} and let \mathcal{X} be a \mathbb{Z} -model of X, i.e., a projective (normal, generically smooth) scheme over $\text{Spec}(\mathbb{Z})$ with $\mathcal{X} \otimes \mathbb{Q} = X$.

For example $\mathbb{P}^n_{\mathbb{Z}}$ is a \mathbb{Z} -model of $\mathbb{P}^n_{\mathbb{O}}$.

The proof of e.c. of $\overline{\mathbb{Q}}[1]$ uses Arakelov geometry, which gives a more conceptual understanding of predicates $R_t(f(-))$.

Let X be a (smooth) variety over \mathbb{Q} and let \mathcal{X} be a \mathbb{Z} -model of X, i.e., a projective (normal, generically smooth) scheme over $\text{Spec}(\mathbb{Z})$ with $\mathcal{X} \otimes \mathbb{Q} = X$. For example $\mathbb{P}^n_{\mathbb{Z}}$ is a \mathbb{Z} -model of $\mathbb{P}^n_{\mathbb{Q}}$.

Definition

An arithmetic divisor $\overline{\mathcal{D}} = (\mathcal{D}, g)$ on \mathcal{X} is a divisor \mathcal{D} (linear combination of codimension one subvarieties) on \mathcal{X} together with a Green function $g : (\mathcal{X} \setminus \text{supp}(\mathcal{D}))^{an} \to \mathbb{R}.$

The proof of e.c. of $\overline{\mathbb{Q}}[1]$ uses Arakelov geometry, which gives a more conceptual understanding of predicates $R_t(f(-))$.

Let X be a (smooth) variety over \mathbb{Q} and let \mathcal{X} be a \mathbb{Z} -model of X, i.e., a projective (normal, generically smooth) scheme over $\text{Spec}(\mathbb{Z})$ with $\mathcal{X} \otimes \mathbb{Q} = X$. For example $\mathbb{P}^n_{\mathbb{Z}}$ is a \mathbb{Z} -model of $\mathbb{P}^n_{\mathbb{Q}}$.

Definition

An arithmetic divisor $\overline{\mathcal{D}} = (\mathcal{D}, g)$ on \mathcal{X} is a divisor \mathcal{D} (linear combination of codimension one subvarieties) on \mathcal{X} together with a Green function $g : (\mathcal{X} \setminus \text{supp}(\mathcal{D}))^{an} \to \mathbb{R}.$

A function $g : (\mathcal{X} \setminus \text{supp}(\mathcal{D}))^{an} \to \mathbb{R}$ is a *Green function* for \mathcal{D} , if for any open $\mathcal{U} \subset \mathcal{X}$ on which \mathcal{D} is given by equation d = 0 the function $g + \log |d|$ extends to a continuous function on the complex analytification \mathcal{U}^{an} .

If
$$f \in \mathbb{Q}(\mathcal{X})$$
, then one can define $\widehat{\operatorname{div}}(f) = (\operatorname{div}(f), -\log|f|)$.

∃ →

æ

If
$$f \in \mathbb{Q}(\mathcal{X})$$
, then one can define $\widehat{\operatorname{div}}(f) = (\operatorname{div}(f), -\log |f|)$.

Let $\overline{\mathcal{D}}, \overline{\mathcal{E}}$ be adelic divisors on \mathcal{X} with \mathcal{D}, \mathcal{E} effective. If $\mathcal{D} \cap \mathcal{E}$ is a (Cartier) divisor, one defines:

$$\overline{\mathcal{D}} \wedge \overline{\mathcal{E}} := (\mathcal{D} \cap \mathcal{E}, \min(g_{\mathcal{D}}, g_{\mathcal{E}})).$$

If
$$f \in \mathbb{Q}(\mathcal{X})$$
, then one can define $\widehat{\operatorname{div}}(f) = (\operatorname{div}(f), -\log |f|)$.

Let $\overline{\mathcal{D}}, \overline{\mathcal{E}}$ be adelic divisors on \mathcal{X} with \mathcal{D}, \mathcal{E} effective. If $\mathcal{D} \cap \mathcal{E}$ is a (Cartier) divisor, one defines:

$$\overline{\mathcal{D}} \wedge \overline{\mathcal{E}} := (\mathcal{D} \cap \mathcal{E}, \min(g_{\mathcal{D}}, g_{\mathcal{E}})).$$

If the intersection is not a divisor, one can pass to to a blowup $\mathcal{X}' \to \mathcal{X}$ to ensure that it is the case. The function field $\mathbb{Q}(\mathcal{X}') = \mathbb{Q}(\mathcal{X}) = \mathbb{Q}(\mathcal{X})$ stays the same.

May 2023

If
$$f \in \mathbb{Q}(\mathcal{X})$$
, then one can define $\widehat{\operatorname{div}}(f) = (\operatorname{div}(f), -\log |f|)$.

Let $\overline{\mathcal{D}}, \overline{\mathcal{E}}$ be adelic divisors on \mathcal{X} with \mathcal{D}, \mathcal{E} effective. If $\mathcal{D} \cap \mathcal{E}$ is a (Cartier) divisor, one defines:

$$\overline{\mathcal{D}} \wedge \overline{\mathcal{E}} := (\mathcal{D} \cap \mathcal{E}, \min(g_{\mathcal{D}}, g_{\mathcal{E}})).$$

If the intersection is not a divisor, one can pass to to a blowup $\mathcal{X}' \to \mathcal{X}$ to ensure that it is the case. The function field $\mathbb{Q}(\mathcal{X}') = \mathbb{Q}(\mathcal{X}) = \mathbb{Q}(\mathcal{X})$ stays the same.

We can form (modulo technicalities) a real vector space of adelic divisors on blowups of \mathcal{X} denoted by ADiv($\mathbb{Q}(\mathcal{X})$). It has lattice operations \land,\lor .

If
$$f \in \mathbb{Q}(\mathcal{X})$$
, then one can define $\widehat{\operatorname{div}}(f) = (\operatorname{div}(f), -\log |f|)$.

Let $\overline{\mathcal{D}}, \overline{\mathcal{E}}$ be adelic divisors on \mathcal{X} with \mathcal{D}, \mathcal{E} effective. If $\mathcal{D} \cap \mathcal{E}$ is a (Cartier) divisor, one defines:

$$\overline{\mathcal{D}} \wedge \overline{\mathcal{E}} := (\mathcal{D} \cap \mathcal{E}, \min(g_{\mathcal{D}}, g_{\mathcal{E}})).$$

If the intersection is not a divisor, one can pass to to a blowup $\mathcal{X}' \to \mathcal{X}$ to ensure that it is the case. The function field $\mathbb{Q}(\mathcal{X}') = \mathbb{Q}(\mathcal{X}) = \mathbb{Q}(\mathcal{X})$ stays the same.

We can form (modulo technicalities) a real vector space of adelic divisors on blowups of \mathcal{X} denoted by $\operatorname{ADiv}(\mathbb{Q}(\mathcal{X}))$. It has lattice operations \land,\lor . By definition $\overline{\mathcal{D}}\lor\overline{\mathcal{E}}:=-((-\overline{\mathcal{D}})\land(-\overline{\mathcal{E}}))$ and \mathcal{D} is called *effective* ($\overline{\mathcal{D}}\ge 0$), if $\overline{\mathcal{D}}\lor 0=\overline{\mathcal{D}}$.

If $\overline{\mathcal{D}}$ is an adelic divisor on \mathcal{X} (with \mathcal{D} effective) and $x \in X(\overline{\mathbb{Q}})$ we define the height $h_{\overline{\mathcal{D}}}(x)$ as the number

$$h_{\overline{\mathcal{D}}}(x) := rac{1}{[\kappa(x):\mathbb{Q}]}ig(\log \#(\mathcal{O}_{\mathcal{C}}(\mathcal{D})/\mathcal{O}_{\mathcal{C}}) + \sum_{\sigma:\kappa(x)
ightarrow \mathbb{C}} g(x^{\sigma})ig),$$

where C is the closure of $\{x\}$ in \mathcal{X} .

If $\overline{\mathcal{D}}$ is an adelic divisor on \mathcal{X} (with \mathcal{D} effective) and $x \in X(\overline{\mathbb{Q}})$ we define the height $h_{\overline{\mathcal{D}}}(x)$ as the number

$$h_{\overline{\mathcal{D}}}(x) := rac{1}{[\kappa(x):\mathbb{Q}]}ig(\log\#(\mathcal{O}_\mathcal{C}(\mathcal{D})/\mathcal{O}_\mathcal{C}) + \sum_{\sigma:\kappa(x) o\mathbb{C}} g(x^\sigma)ig),$$

where C is the closure of $\{x\}$ in \mathcal{X} .

Fact

Let $\overline{\mathcal{D}} = t(\widehat{\operatorname{div}}(\overline{a}))$ for some $\overline{a} \in \mathbb{Q}(\mathcal{X})$ and a \mathbb{Q} -tropical polynomial t. Pick $x \in X(\overline{\mathbb{Q}})$ such that $x \notin \operatorname{supp}(\mathcal{D})$. Then in $\overline{\mathbb{Q}}[1]$

$$h_{\overline{\mathcal{D}}}(x) = R_t(\overline{a}|_x).$$

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Let $I : ADiv(\mathbb{Q}(\mathcal{X})) \to \mathbb{R}$ be a linear map over \mathbb{R} . It is called a normalised GVF functional if it:

- sends $\widehat{\operatorname{div}}(f)$ to 0 for every $f \in \mathbb{Q}(\mathcal{X})$ (product formula),
- $\bullet\,$ sends effective arithmetic divisors to $\mathbb{R}_{\geq 0}$ (non-negativity of the measure),
- sends (div(2),0) to log(2) (extending $\mathbb{Q}[1]$).

May 2023

Let $I : ADiv(\mathbb{Q}(\mathcal{X})) \to \mathbb{R}$ be a linear map over \mathbb{R} . It is called a normalised GVF functional if it:

- sends $\widehat{\operatorname{div}}(f)$ to 0 for every $f \in \mathbb{Q}(\mathcal{X})$ (product formula),
- \bullet sends effective arithmetic divisors to $\mathbb{R}_{\geq 0}$ (non-negativity of the measure),
- sends (div(2),0) to log(2) (extending $\mathbb{Q}[1]).$

Theorem (Sz.)

There is a bijection between GVF structures on $\mathbb{Q}(\mathcal{X})$ extending $\mathbb{Q}[1]$ and normalised GVF functionals on $ADiv(\mathbb{Q}(\mathcal{X}))$ given by

$$I(\overline{\mathcal{D}}) = R_t(\overline{a}) \text{ for } \overline{\mathcal{D}} = t(\widehat{\operatorname{div}}(\overline{a})).$$

э

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

The height is a part of more general family of intersection theoretic invariants. Namely if $\overline{\mathcal{D}}_0, \ldots, \overline{\mathcal{D}}_k$ are adelic divisors on \mathcal{X} and $\mathcal{Z} \subset \mathcal{X}$ is a k + 1-dimensional subvariety, then one can define

 $\widehat{\mathsf{deg}}(\overline{\mathcal{D}}_0,\ldots,\overline{\mathcal{D}}_k|\mathcal{Z})\in\mathbb{R}.$

The height is a part of more general family of intersection theoretic invariants. Namely if $\overline{\mathcal{D}}_0, \ldots, \overline{\mathcal{D}}_k$ are adelic divisors on \mathcal{X} and $\mathcal{Z} \subset \mathcal{X}$ is a k + 1-dimensional subvariety, then one can define

 $\widehat{\mathsf{deg}}(\overline{\mathcal{D}}_0,\ldots,\overline{\mathcal{D}}_k|\mathcal{Z})\in\mathbb{R}.$

Then

$$h_{\overline{\mathcal{D}}}(x) = \frac{\widehat{\operatorname{deg}}(\overline{\mathcal{D}}|\overline{\{x\}})}{[\kappa(x):\mathbb{Q}]}.$$

19/29

The height is a part of more general family of intersection theoretic invariants. Namely if $\overline{\mathcal{D}}_0, \ldots, \overline{\mathcal{D}}_k$ are adelic divisors on \mathcal{X} and $\mathcal{Z} \subset \mathcal{X}$ is a k + 1-dimensional subvariety, then one can define

 $\widehat{\mathsf{deg}}(\overline{\mathcal{D}}_0,\ldots,\overline{\mathcal{D}}_k|\mathcal{Z})\in\mathbb{R}.$

Then

$$h_{\overline{\mathcal{D}}}(x) = \frac{\widehat{\deg}(\overline{\mathcal{D}}|\overline{\{x\}})}{[\kappa(x):\mathbb{Q}]}.$$

The arithmetic degree is multilinear and defined inductively by the following formula.

Write $\mathcal{D}_k \cap \mathcal{Z} = \sum_i a_i \mathcal{W}_i$ as a cycle. Assume that the intersection is transversal. Then

Write $\mathcal{D}_k \cap \mathcal{Z} = \sum_i a_i \mathcal{W}_i$ as a cycle. Assume that the intersection is transversal. Then

$$\widehat{\deg}(\overline{\mathcal{D}}_0, \dots, \overline{\mathcal{D}}_k | \mathcal{Z})
onumber \ = \sum_i a_i \widehat{\deg}(\overline{\mathcal{D}}_0, \dots, \overline{\mathcal{D}}_{k-1} | \mathcal{W}_i)
onumber \ + \int_{\mathcal{Z}(\mathbb{C})} g_{\overline{\mathcal{D}}_k} c_1(\overline{\mathcal{D}}_0) \wedge \dots \wedge c_1(\overline{\mathcal{D}}_{k-1}).$$

Write $\mathcal{D}_k \cap \mathcal{Z} = \sum_i a_i \mathcal{W}_i$ as a cycle. Assume that the intersection is transversal. Then

$$\widehat{\deg}(\overline{\mathcal{D}}_0, \dots, \overline{\mathcal{D}}_k | \mathcal{Z})$$

= $\sum_i a_i \widehat{\deg}(\overline{\mathcal{D}}_0, \dots, \overline{\mathcal{D}}_{k-1} | \mathcal{W}_i)$
+ $\int_{\mathcal{Z}(\mathbb{C})} g_{\overline{\mathcal{D}}_k} c_1(\overline{\mathcal{D}}_0) \wedge \dots \wedge c_1(\overline{\mathcal{D}}_{k-1}).$

If dim $\mathcal{X} = d + 1$ and $\overline{\mathcal{D}}_0, \dots, \overline{\mathcal{D}}_d$ are arithmetic divisors on \mathcal{X} , we write $\overline{\mathcal{D}}_0 \cdot \dots \cdot \overline{\mathcal{D}}_d$ for the intersection product with respect to \mathcal{X} .

20 / 29

- 2 Globally Valued Fields
- 3 Arakelov geometry

21/29

Let $ADiv(\mathcal{X})$ be the real vector space of arithmetic divisors on \mathcal{X} . The existential closedness of $\overline{\mathbb{Q}}[1]$ translates to the following.

Theorem (Sz.)

Let $\overline{\mathcal{D}}_1, \ldots, \overline{\mathcal{D}}_n$ be arithmetic divisors on \mathcal{X} . Assume that $l : \operatorname{ADiv}(\mathbb{Q}(\mathcal{X})) \to \mathbb{R}$ is a normalised GVF functional. Then there is a generic sequence of $\overline{\mathbb{Q}}$ -points $x_n \in X$ such that for all $i = 1, \ldots, n$

$$\lim_{n} h_{\overline{\mathcal{D}}_{i}}(x_{n}) = I(\overline{\mathcal{D}}_{i}).$$

If one of $\overline{\mathcal{D}}_i$ is big, then *l* can be only defined on the real span of $\overline{\mathcal{D}}_i$'s.

The crucial ingredient of the proof is the arithmetical volume function, i.e.,

$$\widehat{\operatorname{vol}}(\overline{\mathcal{D}}) := \limsup_{n} \frac{\log \# \widehat{H}^0(n\overline{\mathcal{D}})}{n^{d+1}/(d+1)!},$$

where $\widehat{H}^0(n\overline{D})$ is the set of effective arithmetic divisors rationally equivalent to $n\overline{D}$ (i.e. their difference is spanned by $\widehat{\operatorname{div}}(f)$'s).

The crucial ingredient of the proof is the arithmetical volume function, i.e.,

$$\widehat{\operatorname{vol}}(\overline{\mathcal{D}}) := \limsup_{n} \frac{\log \# \widehat{H}^0(n\overline{\mathcal{D}})}{n^{d+1}/(d+1)!},$$

where $\widehat{H}^0(n\overline{D})$ is the set of effective arithmetic divisors rationally equivalent to $n\overline{D}$ (i.e. their difference is spanned by $\widehat{\operatorname{div}}(f)$'s).

It measures how big values of $h_{\overline{D}}$ are expected to be. We call \overline{D} big, if $\widehat{vol}(\overline{D}) > 0$.

May 2023

The crucial ingredient of the proof is the arithmetical volume function, i.e.,

$$\widehat{\operatorname{vol}}(\overline{\mathcal{D}}) := \limsup_{n} \frac{\log \# \widehat{H}^0(n\overline{\mathcal{D}})}{n^{d+1}/(d+1)!},$$

where $\widehat{H}^0(n\overline{D})$ is the set of effective arithmetic divisors rationally equivalent to $n\overline{D}$ (i.e. their difference is spanned by $\widehat{\operatorname{div}}(f)$'s).

It measures how big values of $h_{\overline{D}}$ are expected to be. We call \overline{D} big, if $\widehat{vol}(\overline{D}) > 0$.

If \overline{D} is big, then $\widehat{\text{vol}}$ has directional derivatives at every direction at \overline{D} by [Che11]. Also, arithmetic volume is (d + 1)-homogeneous, i.e., $\widehat{\text{vol}}(n\overline{D}) = n^{d+1}\widehat{\text{vol}}(\overline{D})$.

The crucial ingredient of the proof is the arithmetical volume function, i.e.,

$$\widehat{\operatorname{vol}}(\overline{\mathcal{D}}) := \limsup_{n} \frac{\log \# \widehat{H}^0(n\overline{\mathcal{D}})}{n^{d+1}/(d+1)!}$$

where $\widehat{H}^0(n\overline{D})$ is the set of effective arithmetic divisors rationally equivalent to $n\overline{D}$ (i.e. their difference is spanned by $\widehat{\operatorname{div}}(f)$'s).

It measures how big values of $h_{\overline{D}}$ are expected to be. We call \overline{D} big, if $\widehat{vol}(\overline{D}) > 0$.

If \overline{D} is big, then $\widehat{\text{vol}}$ has directional derivatives at every direction at \overline{D} by [Che11]. Also, arithmetic volume is (d + 1)-homogeneous, i.e., $\widehat{\text{vol}}(n\overline{D}) = n^{d+1}\widehat{\text{vol}}(\overline{D})$.

Moreover, if $\overline{\mathcal{D}}$ is arithmetically ample, then $\widehat{\mathrm{vol}}(\overline{\mathcal{D}}) = \overline{\mathcal{D}}^{d+1}$ (arithmetic intersection product).

Szachniewicz (Ox)

Assume that V is Span $(\overline{D}_1, \ldots, \overline{D}_n)$ divided by rational equivalence and consider $I: V \to \mathbb{R}$. Fix $\varepsilon > 0$. The proof follows the following steps:

• Perturb / by less than ε so that it is strictly positive on all big $\overline{\mathcal{D}} \in V$.

Assume that V is Span $(\overline{D}_1, \ldots, \overline{D}_n)$ divided by rational equivalence and consider $I: V \to \mathbb{R}$. Fix $\varepsilon > 0$. The proof follows the following steps:

- Perturb / by less than ε so that it is strictly positive on all big $\overline{\mathcal{D}} \in V$.
- Consider the function $\frac{\widehat{\operatorname{vol}}^{1/d+1}}{I}$. It is well defined on $V \setminus \{0\}$ by the first point and it is determined by its values on the unit sphere in V by homogeneity. At the maximum on the sphere, the derivatives of $\widehat{\operatorname{vol}}^{1/d+1}$ and I coincide.

May 2023

Assume that V is Span $(\overline{D}_1, \ldots, \overline{D}_n)$ divided by rational equivalence and consider $I: V \to \mathbb{R}$. Fix $\varepsilon > 0$. The proof follows the following steps:

- Perturb / by less than ε so that it is strictly positive on all big $\overline{\mathcal{D}} \in V$.
- Consider the function $\frac{\widehat{\operatorname{vol}}^{1/d+1}}{I}$. It is well defined on $V \setminus \{0\}$ by the first point and it is determined by its values on the unit sphere in V by homogeneity. At the maximum on the sphere, the derivatives of $\widehat{\operatorname{vol}}^{1/d+1}$ and I coincide.
- We get that up to (multiplicative) constant $D_{\overline{D}} \widehat{\text{vol}} = I$. But $D_{\overline{D}} (\overline{D}^{d+1}) (\overline{\mathcal{M}}) = (d+1) \overline{\mathcal{D}}^d \cdot \overline{\mathcal{M}}$. This means that up to a constant I is given by multiplication with $\overline{\mathcal{D}}^d$.

May 2023

Assume that V is Span $(\overline{D}_1, \ldots, \overline{D}_n)$ divided by rational equivalence and consider $I: V \to \mathbb{R}$. Fix $\varepsilon > 0$. The proof follows the following steps:

- Perturb / by less than ε so that it is strictly positive on all big $\overline{\mathcal{D}} \in V$.
- Consider the function $\frac{\widehat{\operatorname{vol}}^{1/d+1}}{l}$. It is well defined on $V \setminus \{0\}$ by the first point and it is determined by its values on the unit sphere in V by homogeneity. At the maximum on the sphere, the derivatives of $\widehat{\operatorname{vol}}^{1/d+1}$ and l coincide.
- We get that up to (multiplicative) constant $D_{\overline{D}} \widehat{\text{vol}} = I$. But $D_{\overline{D}} (\overline{D}^{d+1}) (\overline{\mathcal{M}}) = (d+1) \overline{\mathcal{D}}^d \cdot \overline{\mathcal{M}}$. This means that up to a constant I is given by multiplication with $\overline{\mathcal{D}}^d$.
- Use arithmetic Bertini Theorems [Cha17], [Wil22] to pick d sections of powers of $\overline{\mathcal{D}}$ whose intersection is an irreducible curve in \mathcal{X} .

24 / 29

Assume that V is Span $(\overline{D}_1, \ldots, \overline{D}_n)$ divided by rational equivalence and consider $I: V \to \mathbb{R}$. Fix $\varepsilon > 0$. The proof follows the following steps:

- Perturb / by less than ε so that it is strictly positive on all big $\overline{\mathcal{D}} \in V$.
- Consider the function $\frac{\widehat{\operatorname{vol}}^{1/d+1}}{l}$. It is well defined on $V \setminus \{0\}$ by the first point and it is determined by its values on the unit sphere in V by homogeneity. At the maximum on the sphere, the derivatives of $\widehat{\operatorname{vol}}^{1/d+1}$ and l coincide.
- We get that up to (multiplicative) constant $D_{\overline{D}} \widehat{\text{vol}} = I$. But $D_{\overline{D}} (\overline{D}^{d+1}) (\overline{\mathcal{M}}) = (d+1) \overline{\mathcal{D}}^d \cdot \overline{\mathcal{M}}$. This means that up to a constant I is given by multiplication with $\overline{\mathcal{D}}^d$.
- Use arithmetic Bertini Theorems [Cha17], [Wil22] to pick d sections of powers of $\overline{\mathcal{D}}$ whose intersection is an irreducible curve in \mathcal{X} .
- Let x ∈ X(Q) be the generic point of that curve. By the assumptions
 of the theorem we can deal with multiplicative constant and x works!

The crucial step is passing from the equation $\overline{\mathcal{D}}^d \cdot (-) = l(-)$ to the existence of a point x such that $h_{(-)}(x) \approx l(-)$.

25 / 29

The crucial step is passing from the equation $\overline{\mathcal{D}}^d \cdot (-) = l(-)$ to the existence of a point x such that $h_{(-)}(x) \approx l(-)$.

Assume \overline{D} is arithmetically ample. The arithmetic Bertini type theorems mentioned before, allow us to find a natural *n* and an effective $\overline{\mathcal{E}}$ on \mathcal{X} rationally equivalent to $n\overline{D}$, such that \mathcal{E} is irreducible and generically smooth and

The crucial step is passing from the equation $\overline{\mathcal{D}}^d \cdot (-) = l(-)$ to the existence of a point x such that $h_{(-)}(x) \approx l(-)$.

Assume \overline{D} is arithmetically ample. The arithmetic Bertini type theorems mentioned before, allow us to find a natural *n* and an effective $\overline{\mathcal{E}}$ on \mathcal{X} rationally equivalent to $n\overline{D}$, such that \mathcal{E} is irreducible and generically smooth and

$$\begin{split} \overline{\mathcal{M}} \cdot n\overline{\mathcal{D}}^{d} &= \widehat{\operatorname{deg}}(\overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d-1} | \mathcal{E}) \\ &+ \int_{\mathcal{X}(\mathbb{C})} g_{\overline{\mathcal{E}}} \cdot c_1(\overline{\mathcal{M}}) \wedge c_1(\overline{\mathcal{D}})^{\wedge (d-1)} \\ &\approx \widehat{\operatorname{deg}}(\overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d-1} | \mathcal{E}). \end{split}$$
The crucial step is passing from the equation $\overline{\mathcal{D}}^d \cdot (-) = l(-)$ to the existence of a point x such that $h_{(-)}(x) \approx l(-)$.

Assume \overline{D} is arithmetically ample. The arithmetic Bertini type theorems mentioned before, allow us to find a natural *n* and an effective $\overline{\mathcal{E}}$ on \mathcal{X} rationally equivalent to $n\overline{D}$, such that \mathcal{E} is irreducible and generically smooth and

$$\begin{split} \overline{\mathcal{M}} \cdot n\overline{\mathcal{D}}^{d} &= \widehat{\deg}(\overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d-1} | \mathcal{E}) \\ + \int_{\mathcal{X}(\mathbb{C})} g_{\overline{\mathcal{E}}} \cdot c_1(\overline{\mathcal{M}}) \wedge c_1(\overline{\mathcal{D}})^{\wedge (d-1)} \\ &\approx \widehat{\deg}(\overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d-1} | \mathcal{E}). \end{split}$$

The point it that we can neglect the integral part coming from $g_{\overline{E}}$.

By repeating this procedure (in the second step we replace \mathcal{X} with \mathcal{E} of codimension one in \mathcal{X}) we get

By repeating this procedure (in the second step we replace \mathcal{X} with \mathcal{E} of codimension one in \mathcal{X}) we get

$$n_1 \dots n_d \cdot \overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^d \approx n_2 \dots n_d \cdot \widehat{\deg}(\overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d-1} | \mathcal{E})$$
$$\approx \dots \approx \widehat{\deg}(\overline{\mathcal{M}} | \mathcal{C}),$$

By repeating this procedure (in the second step we replace \mathcal{X} with \mathcal{E} of codimension one in \mathcal{X}) we get

$$\begin{split} n_1 \dots n_d \cdot \overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^d &\approx n_2 \dots n_d \cdot \widehat{\deg}(\overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d-1} | \mathcal{E}) \\ &\approx \dots \approx \widehat{\deg}(\overline{\mathcal{M}} | \mathcal{C}), \end{split}$$

for some irreducible (generically smooth) curve \mathcal{C} in \mathcal{X} .

By repeating this procedure (in the second step we replace \mathcal{X} with \mathcal{E} of codimension one in \mathcal{X}) we get

$$\begin{split} n_1 \dots n_d \cdot \overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^d &\approx n_2 \dots n_d \cdot \widehat{\deg}(\overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d-1} | \mathcal{E}) \\ &\approx \dots \approx \widehat{\deg}(\overline{\mathcal{M}} | \mathcal{C}), \end{split}$$

for some irreducible (generically smooth) curve C in X.

The generic point $x \in \mathcal{X}(\overline{\mathbb{Q}})$ then satisfies (up to a multiplicative constant that one can show is 1 by normalisation (*)):

May 2023

By repeating this procedure (in the second step we replace \mathcal{X} with \mathcal{E} of codimension one in \mathcal{X}) we get

$$\begin{split} n_1 \dots n_d \cdot \overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^d &\approx n_2 \dots n_d \cdot \widehat{\deg}(\overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d-1} | \mathcal{E}) \\ &\approx \dots \approx \widehat{\deg}(\overline{\mathcal{M}} | \mathcal{C}), \end{split}$$

for some irreducible (generically smooth) curve C in X.

The generic point $x \in \mathcal{X}(\overline{\mathbb{Q}})$ then satisfies (up to a multiplicative constant that one can show is 1 by normalisation (*)):

$$h_{\overline{\mathcal{M}}}(x) \approx \frac{\widehat{\operatorname{deg}}(\overline{\mathcal{M}}|\mathcal{C})}{n_1 \dots n_d} \approx \overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^d \approx I(\overline{\mathcal{M}}).$$

26 / 29

By repeating this procedure (in the second step we replace \mathcal{X} with \mathcal{E} of codimension one in \mathcal{X}) we get

$$\begin{split} n_1 \dots n_d \cdot \overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^d &\approx n_2 \dots n_d \cdot \widehat{\deg}(\overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^{d-1} | \mathcal{E}) \\ &\approx \dots \approx \widehat{\deg}(\overline{\mathcal{M}} | \mathcal{C}), \end{split}$$

for some irreducible (generically smooth) curve C in X.

The generic point $x \in \mathcal{X}(\overline{\mathbb{Q}})$ then satisfies (up to a multiplicative constant that one can show is 1 by normalisation (*)):

$$h_{\overline{\mathcal{M}}}(x) \approx \frac{\widehat{\operatorname{deg}}(\overline{\mathcal{M}}|\mathcal{C})}{n_1 \dots n_d} \approx \overline{\mathcal{M}} \cdot \overline{\mathcal{D}}^d \approx I(\overline{\mathcal{M}}).$$

(*) Some (multiplicative) constants are skipped in this sketch, for the simpler exposition!

Szachniewicz (Ox)

May 2023 26 / 29

Thank you!

æ

- [Ben08] Itaï Ben Yaacov. "Continuous first order logic for unbounded metric structures". In: Journal of Mathematical Logic 08.02 (Dec. 2008), pp. 197–223.
- [BH21] Itaï Ben Yaacov and Ehud Hrushovski. "Globally valued fields (GVF3)". In: *unpublished notes* (2021).
- [BH22] Itaï Ben Yaacov and Ehud Hrushovski. "Globally valued function fields: existential closure (GVF2)". In: arXiv:2212.07269v1 (2022).
- [Cha17] François Charles. "Arithmetic ampleness and an arithmetic Bertini theorem". In: Annales scientifiques de l'École Normale Supérieure 54 (Mar. 2017). DOI: 10.24033/asens.2488.

- [Che11] Huayi Chen. "Differentiability of the arithmetic volume function". In: Journal of the London Mathematical Society 84.2 (July 2011), pp. 365-384. ISSN: 0024-6107. DOI: 10.1112/jlms/jdr011. URL: https://doi.org/10.1112/jlms/jdr011.
- [Wil22] Robert Wilms. "On the Irreducibility and Distribution of Arithmetic Divisors". In: *arXiv:2211.03766v1* (2022).