The ANU p-quotient program (pq) may be called from GAP3. Using this program, GAP3 provides access to the following: the p-quotient algorithm; the p-group generation algorithm; a standard presentation algorithm; an algorithm to compute the automorphism group of a p-group.
The following section describes the function Pq
, which gives access to
the p-quotient algorithm.
The next section describes the function PqDescendants
, which gives
access to the p-group generation algorithm.
The next sections describe functions for saving results to file (see PqList and SavePqList).
The next section describes the function StandardPresentation
which
gives access to the standard presentation algorithm and to the algorithm
used to compute the automorphism group of a p-group.
The last sections describes the function IsIsomorphicPGroup
which
implements an isomorphism test for p-groups using the standard
presentation algorithm.
Pq( F, ... )
Let F be a finitely presented group. Then Pq
returns the desired
p-quotient of F as an ag group.
The following parameters or parameter pairs are supported.
true
is returned.
Alternatively, you can pass Pq
a record as a parameter, which contains
as entries some (or all) of the above mentioned. Those parameters which
do not occur in the record are set to their default values.
See also PqHomomorphism.
gap> RequirePackage("anupq"); gap> f2 := FreeGroup( 2, "f2" ); Group( f2.1, f2.2 ) gap> Pq( f2, rec( Prime := 2, ClassBound := 3 ) ); Group( G.1, G.2, G.3, G.4, G.5, G.6, G.7, G.8, G.9, G.10 ) gap> g := f2 / [ f2.1^4, f2.2^4 ];; gap> Pq( g, rec( Prime := 2, ClassBound := 3 ) ); Group( G.1, G.2, G.3, G.4, G.5, G.6, G.7, G.8 ) gap> Pq( g, "Prime", 2, "ClassBound", 3, "Exponent", 4 ); Group( G.1, G.2, G.3, G.4, G.5, G.6, G.7 ) gap> g := f2 / [ f2.1^25, Comm(Comm(f2.2,f2.1),f2.1), f2.2^5 ];; gap> Pq( g, "Prime", 5, "Metabelian", "ClassBound", 5 ); Group( G.1, G.2, G.3, G.4, G.5, G.6, G.7 )
This function requires the package "anupq" (see RequirePackage).
PqHomomorphism( G, images )
Let G be a p-quotient of F computed using Pq
. If images is a
list of images of F.generators
under an automorphism of F,
PqHomomorphism
will return the corresponding automorphism of G.
gap> F := FreeGroup (2, "F"); Group( F.1, F.2 ) gap> G := Pq (F, "Prime", 5, "Class", 2); Group( G.1, G.2, G.3, G.4, G.5 ) gap> PqHomomorphism (G, [F.2, F.1]); GroupHomomorphismByImages( Group( G.1, G.2, G.3, G.4, G.5 ), Group( G.1, G.2, G.3, G.4, G.5 ), [ G.1, G.2, G.3, G.4, G.5 ], [ G.2, G.1, G.3^4, G.5, G.4 ] )
PqDescendants( G, ... )
Let G be an ag group of prime power order with a consistent
power-commutator presentation (see IsConsistent). PqDescendants
returns a list of descendants of G.
If G does not have p-class 1, then a list of automorphisms of G
must be bound to the record component G.automorphisms
such that
G.automorphisms
together with the inner automorphisms of G generate
the automorphism group of G.
One method which may be used to obtain such a generating set for the
automorphism group is to call StandardPresentation
. The record
returned has a generating set for the automorphism group of G stored as
a component (see StandardPresentation).
The following optional parameters or parameter pairs are supported.
PqDescendants
generates only descendants with lower exponent-p
class at most n. The default value is the exponent-p class of
G plus one.
PqDescendants
generates only descendants of size at most p^{n} .
Note that you cannot set both "OrderBound" and "StepSize".
PqDescendants
generates only those
immediate descendants which are p^{n} bigger than their parent
group.
G.automorphisms
are a PAG generating
sequence for the automorphism group of G supplied in reverse
order.
PqDescendants
returns Sublist( L,sub )
. If an
integer n is supplied, PqDescendants
returns L[n].
true
is returned.
PqDescendants
stores intermediate results in temporary files; the
location of these files is determined by the value selected by
TmpName
. If your default temporary directory does not have enough
free disk space, you can supply an alternative path dir. In this
case PqDescendants
stores its intermediate results in a temporary
subdirectory of dir.
Alternatively, you can globally set the variable ANUPQtmpDir
, for
instance in your ".gaprc" file, to point to a suitable location.
Alternatively, you can pass PqDescendants
a record as a parameter,
which contains as entries some (or all) of the above mentioned. Those
parameters which do not occur in the record are set to their default
values.
Note that you cannot set both "OrderBound" and "StepSize".
In the first example we compute all descendants of the Klein four group which have exponent-2 class at most 5 and order at most 2^{6}.
gap> f2 := FreeGroup( 2, "g" );; gap> g := AgGroupFpGroup(f2 / [f2.1^2, f2.2^2, Comm(f2.2,f2.1)]); Group( g.1, g.2 ) gap> g.name := "g";; gap> l := PqDescendants( g, "OrderBound", 6, "ClassBound", 5, > "AllDescendants" );; gap> Length(l); 83 gap> Number( l, x -> x.isCapable ); 47 gap> List( l, x -> Size(x) ); [ 8, 8, 8, 16, 16, 16, 32, 16, 16, 16, 16, 16, 32, 32, 64, 64, 32, 32, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 ] gap> List( l, x -> Length( PCentralSeries( x, 2 ) ) - 1 ); [ 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5 ]
In the second example we compute all capable descendants of order 27 of the elementary abelian group of order 9. Here, we supply automorphisms which form a PAG generating sequence (in reverse order) for the class 1 group, since this makes the computation more efficient.
gap> f2 := FreeGroup( 2, "g" );; gap> g := AgGroupFpGroup(f2 / [ f2.1^3, f2.2^3, Comm(f2.1,f2.2) ]); Group( g.1, g.2 ) gap> g.name := "g";; gap> g.automorphisms := [];; gap> GroupHomomorphismByImages(g, g, [g.1, g.2], [g.1^2, g.2^2]);; gap> Add( g.automorphisms, last ); gap> GroupHomomorphismByImages(g, g, [g.1, g.2], [g.2^2, g.1]);; gap> Add( g.automorphisms, last ); gap> GroupHomomorphismByImages(g,g,[g.1,g.2],[g.1*g.2^2,g.1^2*g.2^2]);; gap> Add( g.automorphisms, last ); gap> GroupHomomorphismByImages(g, g, [g.1,g.2], [g.1,g.1^2*g.2]);; gap> Add( g.automorphisms, last ); gap> GroupHomomorphismByImages(g, g, [g.1, g.2], [g.1^2, g.2]);; gap> Add( g.automorphisms, last ); gap> l := PqDescendants( g, "OrderBound", 3, > "ClassBound", 2, > "AgAutomorphisms" );; gap> Length(l); 2 gap> List( l, x -> Size(x) ); [ 27, 27 ] gap> List( l, x -> Length( PCentralSeries( x, 3 ) ) - 1 ); [ 2, 2 ]
In the third example, we compute all capable descendants of the elementary abelian group of order 5^{2} which have exponent-5 class at most 3, exponent 5, and are metabelian.
gap> f2 := FreeGroup( 2, "g" );; gap> g := AgGroupFpGroup( f2 / [f2.1^5, f2.2^5, Comm(f2.2,f2.1)] ); Group( g.1, g.2 ) gap> g.name := "g";; gap> l := PqDescendants(g,"Metabelian","ClassBound",3,"Exponent",5);; gap> List( l, x -> Length( PCentralSeries( x, 5 ) ) - 1 ); [ 2, 3, 3 ] gap> List( l, x -> Length( DerivedSeries( x ) ) ); [ 3, 3, 3 ] gap> List( l, x -> Maximum( List( Elements(x), y -> Order(x,y) ) ) ); [ 5, 5, 5 ]
This function requires the package "anupq" (see RequirePackage).
PqList( file )
PqList( file, sub )
PqList( file, n )
The function PqList
reads a file file and returns the list L of ag
groups defined in this file.
If list sub is supplied as a parameter, the function returns Sublist(
L, sub )
. If an integer n is supplied, PqList
returns L[n].
This function and SavePqList
(see SavePqList) can be used to
save and restore a list of descendants (see PqDescendants).
This function requires the package "anupq" (see RequirePackage).
SavePqList( name, list )
The function SavePqList
writes a list of descendants list to a file
name.
This function and PqList
(see PqList) can be used to save and restore
results of PqDescendants
(see PqDescendants).
This function requires the package "anupq" (see RequirePackage).
StandardPresentation( F, p, ... )
StandardPresentation( F, G, ... )
Let F be a finitely presented group. Then StandardPresentation
returns the standard presentation for the desired p-quotient of F as
an ag group.
Let H be the p-quotient whose standard presentation is computed. A
generating set for a supplement to the inner automorphism group of H is
also returned, stored as the component H.automorphisms
. Each
generator is described by its action on each of the generators of the
standard presentation of H.
A finitely-presented group F must be supplied as input. Usually, the user will also supply a prime p and the program will compute the standard presentation for the desired p-quotient of F.
Alternatively, a user may supply an ag group G which is the class 1
p-quotient of F. If this is so, a list of automorphisms of G must
be bound to the record component G.automorphisms
such that
G.automorphisms
together with the inner automorphisms of G generate
the automorphism group of G. The presentation for G can be
constructed by an initial call to Pq (see Pq).
Of course, G need not be the class 1 p-quotient of F. However,
G.automorphisms
must contain a description of the automorphism group
of G and this is most readily available when G is an elementary
abelian group. Where the necessary information is available for a
p-quotient of higher class, one can apply the standard presentation
algorithm from that class onwards.
The following parameters or parameter pairs are supported.
G.automorphisms
are a PAG generating
sequence for the automorphism group of G supplied in reverse
order.
true
is returned.
StandardPresentation
stores intermediate results in temporary
files; the location of these files is determined by the value
selected by TmpName
. If your default temporary directory does not
have enough free disk space, you can supply an alternative path
dir. In this case StandardPresentation
stores its intermediate
results in a temporary subdirectory of dir. Alternatively, you can
globally set the variable ANUPQtmpDir
, for instance in your
".gaprc" file, to point to a suitable location.
Alternatively, you can pass StandardPresentation
a record as a
parameter, which contains as entries some (or all) of the above
mentioned. Those parameters which do not occur in the record are set to
their default values.
We illustrate the method with the following examples.
gap> f2 := FreeGroup( "a", "b" );; gap> g := f2 / [f2.1^25, Comm(Comm(f2.2,f2.1), f2.1), f2.2^5]; Group( a, b ) gap> StandardPresentation( g, 5, "ClassBound", 10 ); Group( G.1, G.2, G.3, G.4, G.5, G.6, G.7, G.8, G.9, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22, G.23, G.24, G.25, G.26 ) gap> f2 := FreeGroup( "a", "b" );; gap> g := f2 / [ f2.1^625, > Comm(Comm(Comm(Comm(f2.2,f2.1),f2.1),f2.1),f2.1)/Comm(f2.2,f2.1)^5, > Comm(Comm(f2.2,f2.1),f2.2), f2.2^625 ];; gap> StandardPresentation( g, 5, "ClassBound", 15, "Metabelian" ); Group( G.1, G.2, G.3, G.4, G.5, G.6, G.7, G.8, G.9, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20 ) gap> f4 := FreeGroup( "a", "b", "c", "d" );; gap> g4 := f4 / [ f4.2^4, f4.2^2 / Comm(Comm (f4.2, f4.1), f4.1), > f4.4^16, f4.1^16 / (f4.3 * f4.4), > f4.2^8 / (f4.4 * f4.3^4) ]; Group( a, b, c, d ) gap> g := Pq( g4, "Prime", 2, "ClassBound", 1 ); Group( G.1, G.2 ) gap> g.automorphisms := [];; gap> GroupHomomorphismByImages(g,g,[g.1,g.2],[g.2,g.1*g.2]);; gap> Add( g.automorphisms, last ); gap> GroupHomomorphismByImages(g,g,[g.1,g.2],[g.2,g.1]);; gap> Add( g.automorphisms, last ); gap> StandardPresentation(g4,g,"ClassBound",14,"AgAutomorphisms"); Group( G.1, G.2, G.3, G.4, G.5, G.6, G.7, G.8, G.9, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22, G.23, G.24, G.25, G.26, G.27, G.28, G.29, G.30, G.31, G.32, G.33, G.34, G.35, G.36, G.37, G.38, G.39, G.40, G.41, G.42, G.43, G.44, G.45, G.46, G.47, G.48, G.49, G.50, G.51, G.52, G.53 )
This function requires the package "anupq" (see RequirePackage).
IsomorphismPcpStandardPcp( G, S )
Let G be a p-group and let S be the standard presentation
computed for G by StandardPresentation
. IsomorphismPcpStandardPcp
returns the isomorphism from G to S.
We illustrate the function with the following example.
gap> F := FreeGroup (6); Group( f.1, f.2, f.3, f.4, f.5, f.6 ) gap> x := F.1;; y := F.2;; z := F.3;; w := F.4;; a := F.5;; b := F.6;; gap> R := [x^3 / w, y^3 / w * a^2 * b^2, w^3 / b, > Comm (y, x) / z, Comm (z, x), Comm (z, y) / a, z^3 ];; gap> q := F / R;; gap> G := Pq (q, "Prime", 3, "ClassBound", 3); Group( G.1, G.2, G.3, G.4, G.5, G.6 ) gap> S := StandardPresentation (q, 3, "ClassBound", 3); Group( G.1, G.2, G.3, G.4, G.5, G.6 ) gap> phi := IsomorphismPcpStandardPcp (G, S); GroupHomomorphismByImages( Group( G.1, G.2, G.3, G.4, G.5, G.6 ), Group( G.1, G.2, G.3, G.4, G.5, G.6 ), [ G.1, G.2, G.3, G.4, G.5, G.6 ], [ G.1*G.2^2*G.3*G.4^2*G.5^2, G.1*G.2*G.3*G.5, G.3^2, G.4*G.6^2, G.5, G.6 ] )
This function requires the package "anupq" (see RequirePackage).
AutomorphismsPGroup( G )
AutomorphismsPGroup( G, output-level)
Let G be a p-group. Then AutomorphismsPGroup
returns a
generating set for the automorphism group of G. Each generator
is described by its action on each of the generators of G.
The runtime-information generated by the ANU pq is displayed at
output-level, which must be a integer from 0 to 3.
We illustrate the function using the p-group considered above.
gap> Auts := AutomorphismsPGroup (G); [ GroupHomomorphismByImages( Group( G.1, G.2, G.3, G.4, G.5, G.6 ), Group( G.1, G.2, G.3, G.4, G.5, G.6 ), [ G.1, G.2, G.3, G.4, G.5, G.6 ], [ G.1, G.2*G.5^2, G.3, G.4, G.5, G.6 ] ), GroupHomomorphismByImages( Group( G.1, G.2, G.3, G.4, G.5, G.6 ), Group( G.1, G.2, G.3, G.4, G.5, G.6 ), [ G.1, G.2, G.3, G.4, G.5, G.6 ], [ G.1, G.2*G.3, G.3, G.4, G.5, G.6 ] ), GroupHomomorphismByImages( Group( G.1, G.2, G.3, G.4, G.5, G.6 ), Group( G.1, G.2, G.3, G.4, G.5, G.6 ), [ G.1, G.2, G.3, G.4, G.5, G.6 ], [ G.1*G.3^2, G.2, G.3*G.5, G.4, G.5, G.6 ] ), GroupHomomorphismByImages( Group( G.1, G.2, G.3, G.4, G.5, G.6 ), Group( G.1, G.2, G.3, G.4, G.5, G.6 ), [ G.1, G.2, G.3, G.4, G.5, G.6 ], [ G.1*G.6, G.2*G.6, G.3, G.4, G.5, G.6 ] ), GroupHomomorphismByImages( Group( G.1, G.2, G.3, G.4, G.5, G.6 ), Group( G.1, G.2, G.3, G.4, G.5, G.6 ), [ G.1, G.2, G.3, G.4, G.5, G.6 ], [ G.1*G.5^2, G.2*G.5, G.3, G.4, G.5, G.6 ] ), GroupHomomorphismByImages( Group( G.1, G.2, G.3, G.4, G.5, G.6 ), Group( G.1, G.2, G.3, G.4, G.5, G.6 ), [ G.1, G.2, G.3, G.4, G.5, G.6 ], [ G.1*G.6^2, G.2*G.6, G.3, G.4, G.5, G.6 ] ), GroupHomomorphismByImages( Group( G.1, G.2, G.3, G.4, G.5, G.6 ), Group( G.1, G.2, G.3, G.4, G.5, G.6 ), [ G.1, G.2, G.3, G.4, G.5, G.6 ], [ G.1*G.4, G.2*G.4*G.6, G.3, G.4*G.6, G.5, G.6 ] ), GroupHomomorphismByImages( Group( G.1, G.2, G.3, G.4, G.5, G.6 ), Group( G.1, G.2, G.3, G.4, G.5, G.6 ), [ G.1, G.2, G.3, G.4, G.5, G.6 ], [ G.1^2*G.3^2, G.2^2*G.3, G.3*G.5, G.4^2, G.5^2, G.6^2 ] ) ]
This function requires the package "anupq" (see RequirePackage).
IsIsomorphicPGroup( G, H )
The functions returns true if G is isomorphic to H. Both groups must be ag groups of prime power order.
gap> p1 := Group( (1,2,3,4), (1,3) ); Group( (1,2,3,4), (1,3) ) gap> p2 := SolvableGroup( 8, 5 ); Q8 gap> p3 := SolvableGroup( 8, 4 ); D8 gap> IsIsomorphicPGroup( AgGroup(p1), p2 ); false gap> IsIsomorphicPGroup( AgGroup(p1), p3 ); true
The function computes and compares the standard presentations for G and H (see StandardPresentation).
This function requires the package "anupq" (see RequirePackage).
gap3-jm