105 CHEVIE Matrix utility functions

This chapter documents various functions which enhance GAP3's ability to work with matrices.

Subsections

  1. EigenvaluesMat
  2. DecomposedMat
  3. BlocksMat
  4. RepresentativeDiagonalConjugation
  5. Transporter
  6. ProportionalityCoefficient
  7. ExteriorPower
  8. SymmetricPower
  9. SchurFunctor
  10. IsNormalizing
  11. IndependentLines
  12. OnMatrices
  13. PermMatMat
  14. BigCellDecomposition

105.1 EigenvaluesMat

EigenvaluesMat( mat )

mat should be a square matrix of Cyclotomics. The function returns the eigenvalues of M which are 0 or roots of unity.

    gap> EigenvaluesMat(DiagonalMat(0,1,E(3),2,3));
    [ 0, 1, E(3) ]
    gap> EigenvaluesMat(PermutationMat((1,2,3,4),5));
    [ 1, 1, -1, E(4), -E(4) ]

105.2 DecomposedMat

DecomposedMat( mat )

Finds if the square matrix mat with zeroes (or false) in symmetric positions admits a block decomposition.

Define a graph G with vertices [1..Length(mat)] and with an edge between i and j if either mat[i][j] or mat[j][i] is non-zero. DecomposedMat return a list of lists l such that l[1],l[2], etc.. are the vertices in each connected component of G. In other words, the matrices mat{l[1]}{l[1]},mat{l[2]}{l[2]}, etc... are blocks of the matrix mat. This function may also be applied to boolean matrices where non-zero is then replaced by true.

    gap> m := [ [  0,  0,  0,  1 ],
    >           [  0,  0,  1,  0 ],
    >           [  0,  1,  0,  0 ],
    >           [  1,  0,  0,  0 ] ];;
    gap> DecomposedMat( m );
    [ [ 1, 4 ], [ 2, 3 ] ]
    gap> PrintArray( m{[ 1, 4 ]}{[ 1, 4 ]});
    [[0, 1],
     [1, 0]]

105.3 BlocksMat

Blocks( M )

Finds if the matrix M admits a block decomposition.

Define a bipartite graph G with vertices [1..Length(M)], [1..Length(M[1])] and with an edge between i and j if M[i][j] is not zero. BlocksMat returns a list of pairs of lists I such that [I[1][1],I[1][2]], etc.. are the vertices in each connected component of G. In other words, M{I[1][1]}{I[1][2]}, M{I[2][1]}{I[2][2]},etc... are blocks of M.

This function may also be applied to boolean matrices where non-zero is then replaced by true.

    gap> m:=[ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 1, 0, 1, 0 ],
    >  [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ] ];;
    gap> BlocksMat(m);
    [ [ [ 1, 3, 5 ], [ 1, 3 ] ], [ [ 2 ], [ 2 ] ], [ [ 4 ], [ 4 ] ] ]
    gap> PrintArray(m{[1,3,5]}{[1,3]});
    [[1, 0],
     [1, 1],
     [0, 1]]

105.4 RepresentativeDiagonalConjugation

RepresentativeDiagonalConjugation( M, N )

M and N must be square matrices. This function returns a list d such that N=M^DiagonalMat(d) if such a list exists, and false otherwise.

    gap> M:=[[1,2],[2,1]];
    [ [ 1, 2 ], [ 2, 1 ] ]
    gap> N:=[[1,4],[1,1]];
    [ [ 1, 4 ], [ 1, 1 ] ]
    gap> RepresentativeDiagonalConjugation(M,N);
    [ 1, 2 ]

105.5 Transporter

Transporter( l1, l2 )

l1 and l2 should be lists of the same length of square matrices all of the same size. The result is a basis of the vector space of matrices A such that for any i we have A*l1[i]=l2[i]*A --- the basis is returned as a list, empty if the vector space is 0. This is useful to find whether two representations are isomorphic.

    gap> W:=CoxeterGroup("A",3);
    CoxeterGroup("A",3)
    gap> Transporter(W.matgens,List(W.matgens,x->x^W.matgens[1]));
    [ [ [ 1, 0, 0 ], [ -1, -1, 0 ], [ 0, 0, -1 ] ] ]
    gap> W.matgens[1];
    [ [ -1, 0, 0 ], [ 1, 1, 0 ], [ 0, 0, 1 ] ]
    gap> Transporter([W.matgens[1]],[W.matgens[1]]);
    [ [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 0 ] ],
      [ [ 0, 0, 0 ], [ 1, 2, 0 ], [ 0, 0, 0 ] ],
      [ [ 0, 0, 0 ], [ 0, 0, 1 ], [ 0, 0, 0 ] ],
      [ [ 0, 0, 0 ], [ 0, 0, 0 ], [ 1, 2, 0 ] ],
      [ [ 0, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 1 ] ] ]

In the second case above, we get a base of the centralizer in matrices of W.matgens[1].

105.6 ProportionalityCoefficient

ProportionalityCoefficient( v, w )

v and w should be two vectors of the same length. The function returns a scalar c such that v=c*w if such a scalar exists, and false otherwise.

    gap> ProportionalityCoefficient([1,2],[2,4]);
    1/2
    gap> ProportionalityCoefficient([1,2],[2,3]);
    false

105.7 ExteriorPower

ExteriorPower( mat, n )

mat should be a square matrix. The function returns the n-th exterior power of mat, in the basis naturally indexed by Combinations([1..r],n), where r=Length(<mat>).

    gap> M:=[[1,2,3,4],[2,3,4,1],[3,4,1,2],[4,1,2,3]];
    [ [ 1, 2, 3, 4 ], [ 2, 3, 4, 1 ], [ 3, 4, 1, 2 ], [ 4, 1, 2, 3 ] ]
    gap> ExteriorPower(M,2);
    [ [ -1, -2, -7, -1, -10, -13 ], [ -2, -8, -10, -10, -12, 2 ],
      [ -7, -10, -13, 1, 2, 1 ], [ -1, -10, 1, -13, 2, 7 ],
      [ -10, -12, 2, 2, 8, 10 ], [ -13, 2, 1, 7, 10, -1 ] ]

105.8 SymmetricPower

SymmetricPower( mat, n )

mat should be a square matrix. The function returns the n-th symmetric power of mat, in the basis naturally indexed by UnorderedTuples([1..r],n), where r=Length(<mat>).

    gap> M:=[[1,2],[3,4]];
    [ [ 1, 2 ], [ 3, 4 ] ]
    gap> SymmetricPower(M,2);
    [ [ 1, 2, 4 ], [ 6, 10, 16 ], [ 9, 12, 16 ] ]

105.9 SchurFunctor

SchurFunctor(mat,l)

mat should be a square matrix and l a partition. The result is the Schur functor of the matrix mat corresponding to partition l; for example, if l=[n] it returns the n-th symmetric power and if l=[1,1,1] it returns the 3rd exterior power. The current algorithm (from Littlewood) is rather inefficient so it is quite slow for partitions of n where n>6.

    gap> m:=CartanMat("A",3);
    [ [ 2, -1, 0 ], [ -1, 2, -1 ], [ 0, -1, 2 ] ]
    gap> SchurFunctor(m,[2,2]);
    [ [ 10, 12, -16, 16, -16, 12 ], [ 3/2, 9, -6, 4, -2, 1 ],
      [ -4, -12, 16, -16, 8, -4 ], [ 2, 4, -8, 16, -8, 4 ],
      [ -4, -4, 8, -16, 16, -12 ], [ 3/2, 1, -2, 4, -6, 9 ] ]

105.10 IsNormalizing

IsNormalizing( lst, mat )

returns true or false according to whether the matrix mat leaves the vectors in lst as a set invariant, i.e., Set(l * M) = Set( l ).

    gap> a := [ [ 1, 2 ], [ 3, 1 ] ];;
    gap> l := [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ], [ 0, 0 ] ];;
    gap> l * a;
    [ [ 1, 2 ], [ 3, 1 ], [ 4, 3 ], [ 0, 0 ] ]
    gap> IsNormalizing( l, a );
    false

105.11 IndependentLines

IndependentLines( M )

Returns the smallest (for lexicographic order) subset I of [1..Length(M)] such that the rank of M{I} is equal to the rank of M.

    gap> M:=CartanMat(ComplexReflectionGroup(31));
    [ [ 2, 1+E(4), 1-E(4), -E(4), 0 ], [ 1-E(4), 2, 1-E(4), -1, -1 ],
      [ 1+E(4), 1+E(4), 2, 0, -1 ], [ E(4), -1, 0, 2, 0 ],
      [ 0, -1, -1, 0, 2 ] ]
    gap> IndependentLines(M);
    [ 1, 2, 4, 5 ]

105.12 OnMatrices

OnMatrices( M , p)

Effects the simultaneous permutation of the lines and columns of the matrix M specified by the permutation p.

    gap> M:=DiagonalMat([1,2,3]);
    [ [ 1, 0, 0 ], [ 0, 2, 0 ], [ 0, 0, 3 ] ]
    gap> OnMatrices(M,(1,2,3));
    [ [ 3, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 2 ] ]

105.13 PermMatMat

PermMatMat( M , N [, l1, l2])

M and N should be symmetric matrices. PermMatMat returns a permutation p such that OnMatrices(M,p)=N if such a permutation exists, and false otherwise. If list arguments l1 and l2 are given, the permutation p should also satisfy Permuted(l1,p)=l2.

This routine is useful to identify two objects which are isomorphic but with different labelings. It is used in CHEVIE to identify Cartan matrices and Lusztig Fourier transform matrices with standard (classified) data. The program uses sophisticated algorithms, and can often handle matrices up to 80× 80.

    gap> M:=CartanMat("D",12);;
    gap> p:=Random(SymmetricGroup(12));
    ( 1,12, 7, 5, 9, 8, 3, 6)( 2,10)( 4,11)
    gap> N:=OnMatrices(M,p);;
    gap> PermMatMat(M,N);
    ( 1,12, 7, 5, 9, 8, 3, 6)( 2,10)( 4,11)

105.14 BigCellDecomposition

BigCellDecomposition(M [, b])

M should be a square matrix, and b specifies a block structure for a matrix of same size as M (it is a list of lists whose union is [1..Length(M)]). If b is not given, the trivial block structure [[1],..,[Length(M)]] is assumed.

The function decomposes M as a product P1 L P where P is upper block-unitriangular (with identity diagonal blocks), P1 is lower block-unitriangular and L is block-diagonal for the block structure b. If M is symmetric then P1 is the transposed of P and the result is the pair [P,L]; else the result is the triple [P1,L,P]. The only condition for this decomposition of M to be possible is that the principal minors according to the block structure be non-zero. This routine is used when computing the green functions and the example below is extracted from the computation of the Green functions for G2.

    gap> q:=X(Rationals);;q.name:="q";;
    gap> M:= [ [ q^6, q^0, q^3, q^3, q^5 + q, q^4 + q^2 ],
    > [ q^0, q^6, q^3, q^3, q^5 + q, q^4 + q^2 ],
    > [ q^3, q^3, q^6, q^0, q^4 + q^2, q^5 + q ],
    > [ q^3, q^3, q^0, q^6, q^4 + q^2, q^5 + q ],
    > [ q^5 + q, q^5 + q, q^4 + q^2, q^4 + q^2, q^6 + q^4 + q^2 + 1,
    >    q^5 + 2*q^3 + q ],
    >     [ q^4 + q^2, q^4 + q^2, q^5 + q, q^5 + q, q^5 + 2*q^3 + q,
    >    q^6 + q^4 + q^2 + 1 ] ];;
    gap> bb:=[ [ 2 ], [ 4 ], [ 6 ], [ 3, 5 ], [ 1 ] ];;
    gap> PL:=BigCellDecomposition(M,bb);
    [ [ [ q^0, 0*q^0, 0*q^0, 0*q^0, 0*q^0, 0*q^0 ],
          [ q^(-6), q^0, q^(-3), q^(-3), q^(-1) + q^(-5), q^(-2) + q^(-4)
             ], [ 0*q^0, 0*q^0, q^0, 0*q^0, 0*q^0, 0*q^0 ],
          [ q^(-3), 0*q^0, 0*q^0, q^0, q^(-2), q^(-1) ],
          [ q^(-1), 0*q^0, 0*q^0, 0*q^0, q^0, 0*q^0 ],
          [ q^(-2), 0*q^0, q^(-1), 0*q^0, q^(-1), q^0 ] ],
      [ [ q^6 - q^4 - 1 + q^(-2), 0*q^0, 0*q^0, 0*q^0, 0*q^0, 0*q^0 ],
          [ 0*q^0, q^6, 0*q^0, 0*q^0, 0*q^0, 0*q^0 ],
          [ 0*q^0, 0*q^0, q^6 - q^4 - 1 + q^(-2), 0*q^0, 0*q^0, 0*q^0 ],
          [ 0*q^0, 0*q^0, 0*q^0, q^6 - 1, 0*q^0, 0*q^0 ],
          [ 0*q^0, 0*q^0, 0*q^0, 0*q^0, q^6 - q^4 - 1 + q^(-2), 0*q^0 ],
          [ 0*q^0, 0*q^0, 0*q^0, 0*q^0, 0*q^0, q^6 - 1 ] ] ]
    gap> M=TransposedMat(PL[1])*PL[2]*PL[1];
    true

Previous Up Next
Index

gap3-jm
18 Jun 2018