Introduction to Riemann Surfaces - 2025-2026
Cours par Elisha Falbel
Travaux dirigés par David García-Zelada
References :
R. Miranda: Algebraic Curves and Riemann Surfaces. Graduate Studies in Mathematics (1995).
S. Donaldson: Riemann surfaces. Oxford Graduate Texts in Mathematics (2011).
O. Forster: Lectures on Riemann surfaces. Graduate texts in mathematics. Springer (1981).
Un poly par N. Bergeron et A. Guilloux.
Le polycopié sera actualisé chaque semaine.
cours 09/09 : Introduction, Field of meromorphic functions.
cours 11/09 : Divisors, Elliptic functions.
cours 18/09 : Abel's theorem, Riemann-Roch theorem for an elliptic curve.
cours 23/09 : Topology of surfaces, Riemann-Hurwitz formula.
cours 26/09 : Riemann surfaces as branched covers, the field of meromorphic functions of a branched cover.
cours 30/09 : Statement of the uniformization theorem. Affine and projective algebraic curves.
cours 02/10 : Any smooth projective algebraic curve has an embedding into CP^3. Intersection divisor,
Bezout's theorem, Plucker's formula.
cours 07/10 : Holomorphic vector bundles. Differential, holomorphic and meromorphic forms. Residue of a meromorphic form.
cours 09/10 : Riemann-Roch theorem, applications, canonical embedding. Holomorphic line bundles and divisors.
cours 14/10 : De Rham cohomology on a surface. Poisson equation. Hodge decomposition.
cours 16/10 : Existence of meromorphic functions. Existence of meromorphic differentials. Periods, Riemann bilinear relations. Proof of Riemann-Roch theorem.
-->
Exams 2023, 2024.