Let *W,S* be a finite Coxeter system and *H = H(W, R, {u _{s,i}}_{s∈
S,i∈{0,1}})* a corresponding Iwahori-Hecke algebra over the ring

The fact that we know a presentation of *H* makes it easy to check that a
list of matrices *M _{s} ∈ R^{d × d}* for

A general approach for the construction of representations is in terms of
*W*-graphs, see KL79, p.165. Any such *W*-graph carries a
representation of *H*. Note that in this approach, it is necessary to know
the square roots of the parameters of *H*. The simplest example, the
standard *W*-graph defined in KL79, Ex.~6.2 yields a
``deformation'' of the natural reflection representation of *W*. This can
be produced in **CHEVIE** using the function
`HeckeReflectionRepresentation`

.

Another possibility to construct *W*-graphs is by using the
Kazhdan-Lusztig theory of left cells (see KL79); see the following
chapter for more details.

In a similar way as the ordinary character table of the finite Coxeter
group *W* is defined, one also has a character table for the Iwahori-Hecke
algebra *H* in the case when the ground ring *A* is a field such *H* is
split and semisimple. The generic choice for such a ground ring is the
rational function field *K=ℚ(v _{s})_{s∈ S}* where the
parameters of the corresponding algebra

By Tits' Deformation Theorem (see CR87, Sec.~68, for example), the
algebra *H _{K}* is (abstractly) isomorphic to the group algebra of

Now this bijection does depend on the choice of *f*. But one should keep in
mind that this only plays a role in the case where *W* is a
non-crystallographic Coxeter group. In all other cases, as is well-known,
the character table of *W* is rational; moreover, the values of the
irreducible characters of *H _{K}* on basis elements

The character table of *H _{K}* is defined to be the square matrix

If *H* is an Iwahori-Hecke algebra over an arbitrary ground ring *R* as
above, then the **GAP3** function `CharTable`

applied to the corresponding
record returns a character table record which is build up in exactly the
same way as for the finite Coxeter group *W* itself but where the record
component `irreducibles`

contains the character values which are obtained
from those of the generic multi-parameter algebra *H _{K}* by specializing
the indeterminates

`rootParameter`

.

- HeckeReflectionRepresentation
- CheckHeckeDefiningRelations
- CharTable for Hecke algebras
- Representations for Hecke algebras
- PoincarePolynomial
- SchurElements for Iwahori-Hecke algebras
- SchurElement for Iwahori-Hecke algebras
- GenericDegrees
- LowestPowerGenericDegrees for Hecke algebras
- HeckeCharValuesGood

`HeckeReflectionRepresentation( `

`W` )

returns a list of matrices which give the reflection representation of
the Iwahori-Hecke algebra corresponding to the Coxeter group `W`. The
function `Hecke`

must have been applied to the record `W`.

gap> v:= X( Rationals );; v.name := "v";; gap> H := Hecke(CoxeterGroup( "B", 2) , v^2, v); Hecke(B2,v^2,v) gap> ref:= HeckeReflectionRepresentation( H ); [ [ [ -v^0, 0*v^0 ], [ -v^2, v^2 ] ], [ [ v^2, -2*v^0 ], [ 0*v^0, -v^0 ] ] ]

gap> H := Hecke( CoxeterGroup( "H", 3 ));; gap> HeckeReflectionRepresentation( H ); [ [ [ -1, 0, 0 ], [ -1, 1, 0 ], [ 0, 0, 1 ] ], [ [ 1, E(5)+2*E(5)^2+2*E(5)^3+E(5)^4, 0 ], [ 0, -1, 0 ], [ 0, -1, 1 ] ], [ [ 1, 0, 0 ], [ 0, 1, -1 ], [ 0, 0, -1 ] ] ]

`CheckHeckeDefiningRelations( `

`H` , `t` )

returns true or false, according to whether a given set `t` of matrices
corresponding to the standard generators of the Coxeter group `Group(H)`
defines a representation of the Iwahori-Hecke algebra `H` or not.

gap> H := Hecke(CoxeterGroup( "F", 4 ));; gap> r := HeckeReflectionRepresentation( H );; gap> CheckHeckeDefiningRelations( H, r ); true

`CharTable`

returns the character table record of the Iwahori-Hecke
algebra `H`. This is basically the same as the character table of a
Coxeter group described earlier with the exception that the component
`irreducibles`

contains the matrix of the values of the irreducible
characters of the generic Iwahori-Hecke algebra specialized at the
parameters in the component `parameter`

of `H`. Thus, if all these
parameters are equal to *1 ∈ ℚ* then the component `irreducibles`

just contains the ordinary character table of the underlying Coxeter
group.

The function `CharTable`

first recognizes the type of `H`, then calls
special functions for each type involved in `H` and finally forms the
direct product of all these tables.

gap> W := CoxeterGroup( "G", 2 );; gap> u := X( Rationals );; u.name := "u";; gap> v := X( LaurentPolynomialRing( Rationals ) );; v.name := "v";; gap> u := u * v^0;; gap> H := Hecke( W, [ u^2, v^2 ], [ u, v ] ); Hecke(G2,[u^2,v^2],[u,v]) gap> Display( CharTable( H ) ); H(G2) 2 2 2 2 1 1 2 3 1 . . 1 1 1 A0 ~A1 A1 G2 A2 A1+~A1 2P A0 A0 A0 A2 A2 A0 3P A0 ~A1 A1 A1+~A1 A0 A1+~A1 phi{1,0} 1 v^2 u^2 u^2v^2 u^4v^4 u^6v^6 phi{1,6} 1 -1 -1 1 1 1 phi{1,3}' 1 v^2 -1 -v^2 v^4 -v^6 phi{1,3}'' 1 -1 u^2 -u^2 u^4 -u^6 phi{2,1} 2 v^2-1 u^2-1 -uv -u^2v^2 2u^3v^3 phi{2,2} 2 v^2-1 u^2-1 uv -u^2v^2 -2u^3v^3

As mentioned before, the record components `classparam`

, `classnames`

and `irredinfo`

contain canonical labels and parameters for the classes
and the characters (see the introduction to chapter Classes and
representations for reflection groups and also ChevieCharInfo). For
direct products, sequences of such canonical labels of the individual
types are given.

We can also have character tables for algebras where the parameters are not necessarily indeterminates:

gap> H1 := Hecke( W, [ E(6)^2, E(6)^4 ],[ E(6), E(6)^2 ] ); Hecke(G2,[E3,E3^2],[-E3^2,E3]) gap> ct := CharTable( H1 ); CharTable( "H(G2)" ) gap> Display( ct ); H(G2) 2 2 2 2 1 1 2 3 1 . . 1 1 1 A0 ~A1 A1 G2 A2 A1+~A1 2P A0 A0 A0 A2 A2 A0 3P A0 ~A1 A1 A1+~A1 A0 A1+~A1 phi{1,0} 1 E3^2 E3 1 1 1 phi{1,6} 1 -1 -1 1 1 1 phi{1,3}' 1 E3^2 -1 -E3^2 E3 -1 phi{1,3}'' 1 -1 E3 -E3 E3^2 -1 phi{2,1} 2 (-3-ER(-3))/2 (-3+ER(-3))/2 1 -1 -2 phi{2,2} 2 (-3-ER(-3))/2 (-3+ER(-3))/2 -1 -1 2 gap> RankMat( ct.irreducibles ); 5

The last result tells us that the specialized character table is no more invertible.

Character tables of Iwahori--Hecke algebras were introduced in GP93; see also the introduction to this chapter for further information about the origin of the various tables.

This function returns the list of representations of the Iwahori-Hecke
algebra `H`. Each representation is returned as a list of the matrix images
of the generators *T _{s}*.

If there is a second argument, it can be a list of indices (or a single integer) and only the representations with these indices (or that index) in the list of all representations are returned.

gap> W:=CoxeterGroup("I",2,5); CoxeterGroup("I",2,5) gap> q:=X(Cyclotomics);;q.name:="q";; gap> H:=Hecke(W,q); Hecke(I2(5),q) gap> Representations(H); [ [ [ [ q ] ], [ [ q ] ] ], [ [ [ -q^0 ] ], [ [ -q^0 ] ] ], [ [ [ -q^0, q^0 ], [ 0*q^0, q ] ], [ [ q, 0*q^0 ], [ (-E(5)-2*E(5)^2-2*E(5)^3-E(5)^4)*q, -q^0 ] ] ], [ [ [ -q^0, q^0 ], [ 0*q^0, q ] ], [ [ q, 0*q^0 ], [ (-2*E(5)-E(5)^2 -E(5)^3-2*E(5)^4)*q, -q^0 ] ] ] ]

The models implemented for types *B _{n}* and

`Mvp`

s.

gap> W:=CoxeterGroup("B",3); CoxeterGroup("B",3) gap> H:=Hecke(W,Mvp("x")); Hecke(B3,x) gap> Representations(H,2); [ [ [ -1, 0, 0 ], [ 0, x, 0 ], [ 0, 0, x ] ], [ [ (-x+x^2)/(1+x), (1+x^2)/(1+x), 0 ], [ 2x/(1+x), (-1+x)/(1+x), 0 ], [ 0, 0, -1 ] ], [ [ -1, 0, 0 ], [ 0, -1/2+1/2x, 1/2+1/2x ], [ 0, 1/2+1/2x, -1/2+1/2x ] ] ]

`PoincarePolynomial( `

`H` )

The Poincaré polynomial of the Hecke algebra `H`, which is
equal to `SchurElements(`

where `H`)[`ind`]`ind` is the position of the
1-dimensional index representation in the character table of `H`, that is,
the representation which maps *T _{s}* to the corresponding parameter

gap> q := X( Rationals );; q.name := "q";; gap> W := CoxeterGroup( "G", 2 );; H := Hecke( W, q ); Hecke(G2,q) gap> PoincarePolynomial( H ); q^6 + 2*q^5 + 2*q^4 + 2*q^3 + 2*q^2 + 2*q + 1

`SchurElements( `

`H` )

returns the list of constants *S _{χ}* arising from the Schur relations
for the irreducible characters

The element *S _{χ}* also equal to

`CharTable`

.

gap> u := X( Rationals );; u.name := "u";; gap> v := X( LaurentPolynomialRing( Rationals ) );; v.name := "v";; gap> W := CoxeterGroup("G",2);; gap> schur := SchurElements( Hecke( W, [ u ^ 2, v ^ 2 ])); #warning: u*v chosen as 2nd root of (u\^2)*v\^2 [ (u^6 + u^4)*v^6 + (u^6 + 2*u^4 + u^2)*v^4 + (u^4 + 2*u^2 + 1)*v^ 2 + (u^2 + 1), (1 + u^(-2)) + (1 + 2*u^(-2) + u^(-4))*v^( -2) + (u^(-2) + 2*u^(-4) + u^(-6))*v^(-4) + (u^(-4) + u^(-6))*v^( -6), (u^(-4) + u^(-6))*v^6 + (u^(-2) + 2*u^(-4) + u^(-6))*v^4 + ( 1 + 2*u^(-2) + u^(-4))*v^2 + (1 + u^(-2)), (u^2 + 1) + (u^4 + 2*u^2 + 1)*v^(-2) + (u^6 + 2*u^4 + u^2)*v^( -4) + (u^6 + u^4)*v^(-6), (2*u^0)*v^2 + (-2*u + 2*u^(-1))*v + ( 2*u^2 - 2 + 2*u^(-2)) + (2*u - 2*u^(-1))*v^(-1) + (2*u^0)*v^(-2), (2*u^0)*v^2 + (2*u - 2*u^(-1))*v + (2*u^2 - 2 + 2*u^(-2)) + (-2*u + 2*u^(-1))*v^(-1) + (2*u^0)*v^(-2) ]

The Poincaré polynomial is just the Schur element corresponding to the trivial (or index) representation:

gap> schur[PositionId(W)]; (u^6 + u^4)*v^6 + (u^6 + 2*u^4 + u^2)*v^4 + (u^4 + 2*u^2 + 1)*v^ 2 + (u^2 + 1)

(note that the trivial character is not always the first character,
which is why we use `PositionId`

) For further information about generic
degrees and connections with the representation theory of finite groups
of Lie type, see BC72 and Car85.

`SchurElement( `

`H`, `phi` )

returns the Schur element (see ```
Schur Elements for Iwahori-Hecke
algebras
```

) of the Iwahori-Hecke algebra `H` for the irreducible
character of `H` of parameter `phi` (see `CharParams`

in section
CHEVIE utility functions).

gap> u := X( Rationals );; u.name := "u";; gap> v := X( LaurentPolynomialRing( Rationals ) );; v.name := "v";; gap> H := Hecke( CoxeterGroup( "G", 2 ), [ u , v]); Hecke(G2,[u,v]) gap> SchurElement( H, [ [ 1, 3, 1] ] ); (u^(-2) + u^(-3))*v^3 + (u^(-1) + 2*u^(-2) + u^(-3))*v^2 + (1 + 2*u^( -1) + u^(-2))*v + (1 + u^(-1))

We do not have a function for the generic degrees of an Iwahori-Hecke algebra since they are not always defined (for example, if the parameters of the algebra are roots of unity). If they are defined, they can be computed with the command:

` List( SchurElements( `

`H` ), x -> PoincarePolynomial( `H` ) / x );

(See PoincarePolynomial and SchurElement.)

`LowestPowerGenericDegrees( `

`H` )

`H` should be an Iwahori-Hecke algebra all of whose parameters are
monomials in the same indeterminate. `LowestPowerGenericDegrees`

returns a
list holding the *a*-function for all irreducible characters of this
algebra, that is, for each character *χ*, the valuation of the Schur
element of *χ*. The ordering of the result corresponds to the ordering
of the characters in `CharTable(H)`

. One should note that this function
first computes explicitly the Schur elements, so for a one-parameter
algebra, `LowestPowerGenericDegrees(Group(H))`

may be much faster.

gap> q:=X(Rationals);;q.name:="q";; gap> H:=Hecke(CoxeterGroup("B",4),[q^2,q]); Hecke(B4,[q^2,q,q,q]) gap> LowestPowerGenericDegrees(H); [ 7, 6, 7, 12, 20, 3, 5, 3, 7, 6, 13, 2, 3, 10, 1, 4, 2, 7, 0, 3 ]

`HeckeCharValuesGood( `

`H`, `w` )

Let `H` be a Hecke algebra for the Coxeter group `CoxeterGroup(`

,
let `H`)`w` be a good element of `CoxeterGroup(`

in the sense
of GM97 (the representatives of conjugacy classes stored in
`H`)**CHEVIE** are such elements), and let *d* be the order of *w*.

`HeckeCharValuesGood`

computes the values of the irreducible characters
of the Iwahori-Hecke algebra `HW` on *T _{w}^{d}*. The point is that the
character table of the Hecke algebra is not used, and that all the
eigenvalues of

`H.parameters`

, so this can be
used to find the absolute value of the eigenvalues of

gap> q:=X(Rationals);;q.name:="q";; gap> H:=Hecke(CoxeterGroup("B",4),[q^2,q]); Hecke(B4,[q^2,q,q,q]) gap> HeckeCharValuesGood( H, [ 1, 2, 3 ] ); [ q^12, 4*q^12, 3*q^12 + 3*q^8, 3*q^8 + 1, q^0, 2*q^18 + q^12, 6*q^12, 2*q^18 + 3*q^16 + 3*q^12, 3*q^12 + 3*q^8 + 2*q^6, 3*q^16 + 3*q^8, 2*q^6 + 1, 2*q^18, 3*q^16 + 3*q^12, 2*q^6, q^24 + 2*q^18, 4*q^12, q^24 + 3*q^16, q^12 + 2*q^6, q^24, q^12 ]

gap3-jm

18 Jun 2018