|
New files
Integrating the Wigner Distribution on subsets of the phase space, a Survey,
file on arXiv, February 2021.
We review several properties of integrals of the Wigner distribution on subsets of the phase space. Along our way, we provide a theoretical proof of the invalidity of Flandrin's conjecture, a fact already proven via numerical arguments in our joint paper [MR4054880]
with B. Delourme and T. Duyckaerts. We use also the J.G. Wood & A.J. Bracken paper [MR2131219],
for which we offer a mathematical perspective.
We review thoroughly the case of subsets of the plane whose boundary is a conic curve and show that Mehler's formula can be helpful in the analysis of these cases, including for the higher dimensional case investigated in the paper
[MR2761287] by
E. Lieb and Y. Ostrover.
Using the Feichtinger algebra, we show that, generically in the Baire sense,
the Wigner distribution of a pulse in
L2(ℝn)
does not belong to
L1(ℝ2n)
providing as a byproduct a large class of examples of subsets of the phase space
ℝ2n on which the integral of the Wigner distribution is infinite.
We study as well the case of convex polygons of the plane, with a rather weak estimate depending on the number of vertices, but independent of the area of the polygon.
An energy method for averaging lemmas,
with Diogo Arsénio,
accepted for publication in
Pure and Applied Analysis,
file on arXiv, June 2020.
This work introduces a new approach to velocity averaging lemmas in kinetic theory. This approach---based upon the classical energy method---provides a powerful duality principle in kinetic transport equations which allows for a natural extension of classical averaging lemmas to previously unknown cases where the density and the source term belong to dual spaces. More generally, this kinetic duality principle produces regularity results where one can trade a loss of regularity or integrability somewhere in the kinetic transport equation for a suitable opposite gain elsewhere. Also, it looks simpler and more robust to rely on proving inequalities instead of constructing exact parametrices. The results in this article are introduced from a functional analytic point of view and they are motivated by the abstract regularity theory of kinetic transport equations.
Carleman Inequalities: an Introduction and More,
a new book, published in 2019
in the Springer-Verlag Series
Grundlehren der Mathematischen Wissenschaften
.
This is a 576-page book, dealing with various aspects of Carleman inequalities.
On that
link, you will find a short description of the contents of the book as well as some previews opportunities.
On the anti-Wick symbol as a Gelfand-Shilov generalized function,
with Laurent Amour and Jean Nourrigat,
file on arXiv, May 2019,
published in the
Proceedings of the American Mathematical Society
148 (2020), 7, 2909-2914.
The purpose of this article is to prove that the anti-Wick symbol of an operator mapping
S(ℝn) into
S'(ℝn),
which is generally not a tempered distribution, can still be defined as a Gelfand-Shilov generalized function.
This result relies on test function spaces embeddings involving the Schwartz and Gelfand-Shilov spaces. An
additional embedding concerning Schwartz and Gevrey spaces is also given.
On integrals over a convex set of the Wigner distribution,
with Bérangère Delourme and Thomas Duyckaerts,
Journal of Fourier Analysis and Applications,
volume 26, February 2020.
We provide an example of a normalized
L2(ℝ)
function u such
that its Wigner distribution W(u,u) has an integral >1 on the
square [0,a]×[0,a]
for a suitable choice of a. This provides a
negative answer to a question raised by P. Flandrin in 1988. Our arguments are
based upon the study of the Weyl quantization of the indicatrix of
ℝ+×ℝ+
along with a precise numerical analysis of its
discretization.
Mehler's formula and functional calculus,
Science China Mathematics, 62 (2019), no. 6, 1143-1166.
We show that Mehler's formula can be used to handle several formulas involving the quantization of singular Hamiltonians. In particular, we diagonalize in the Hermite basis the Weyl quantization of the characteristic function of several domains of the phase space.
Unique continuation through transversal characteristic hypersurfaces,
Journal d'Analyse Mathématique
,138, (2019), no.1, 135-156.
We prove a unique continuation result for an ill-posed characteristic problem.
A model problem of this type occurs in A.D. Ionescu & S. Klainerman article
(Theorem 1.1 in [MR2470908]) and we extend their model-result using only geometric assumptions.
The main tools are Carleman estimates and Hörmander's pseudo-convexity conditions.
Some natural subspaces and quotient spaces of L1,
with Gilles Godefroy,
Advances in Operator Theory,
3 (2018), no.1, 73-86,
paper online.
|