Wiesława Nizioł
Directrice de recherche, CNRS
Sorbonne Université
IMJ-PRG, équipe de théorie des nombres
4, place Jussieu, F-75005 PARIS 05
France
PHONE: (+33) ?
EMAIL: wieslawa.niziol [a] imj-prg.fr
Research Interests
Arithmetic algebraic geometry: p-adic Hodge theory, Galois representations, p-adic cohomology.
Curriculum Vitae
Editorship
Bulletin Polish Acad. Sci. Math.
, a mathematical journal of the Polish Academy of Sciences, devoted to concise papers.
I encourage you to submit your number theory and algebraic geometry papers to this journal
!
Papers
•
Cohomologie des courbes analytiques p-adiques,
(with
Pierre Colmez
,
Gabriel Dospinescu
), preprint, 124 pages, January 2021.
•
Hodge Theory of p-adic varieties: a survey,
preprint, 24 pages, May 2020, to appear in Annales Polonici Mathematici.
•
p-adic étale cohomology of period domains
(with
Pierre Colmez
,
Gabriel Dospinescu
,
Julien Hauseux
), preprint, 50 pages, January 2020, to appear in Mathematische Annalen.
•
On syntomic regulators I: constructions
, preprint, 60 pages, June 2016.
•
Integral p-adic étale cohomology of Drinfeld symmetric spaces
(with
Pierre Colmez
,
Gabriel Dospinescu
), Duke Math. J. 170 (2021), no. 3, 575 - 613.
•
On uniqueness of p-adic period morphisms, II
, Compos. Math. 156 (2020), no. 9, 1915-1964.
•
On p-adic comparison theorems for rigid analytic varieties, I
(with
Pierre Colmez
), Münster J. Math. 13 (2020) (Special Issue: In honor of Ch. Deninger), 445-507.
•
On the cohomology of the affine space
(with
Pierre Colmez
), p-adic Hodge Theory, Simons Symposia, Springer, 2020, 71-80.
•
Cohomologie p-adique de la tour de Drinfeld: le cas de la dimension 1
(with
Pierre Colmez
,
Gabriel Dospinescu
), J. Amer. Math. Soc. 33 (2020), 311-362.
•
Cohomology of p-adic Stein spaces
(with
Pierre Colmez
,
Gabriel Dospinescu
), Invent. Math. 219 (2020), no.3, 873-985.
•
Geometric syntomic cohomology and vector bundles on the Fargues-Fontaine curve
, J. Algebraic Geom. 28 (2019), 605-648.
•
Syntomic cohomology and p-adic motivic cohomology
(with
Veronika Ertl
), Algebraic Geometry 6 (2019), no. 1, 100-131.
•
On p-adic absolute Hodge cohomology and syntomic coefficients, I
(with
Frédéric Déglise
), Comment. Math. Helv. 93 (2018), no. 1, 71-131.
•
Syntomic complexes and p-adic nearby cycles
(with
Pierre Colmez
), Invent. Math. 208 (2017), no.1, 1-108.
•
Syntomic cohomology and regulators for varieties over p-adic fields
(with
Jan Nekovář
), Algebra Number Theory 10 (2016), no. 8, 1695–1790.
•
K-theory of log-schemes II: log-syntomic K-theory
, Adv. Math 230 (2012), 1646–1672.
•
On uniqueness of p-adic period morphisms
, Pure Appl. Math. Q. 5 (2009), no. 1, (Special Issue: In honor of Jean-Pierre Serre), 163–212.
•
K-theory of log-schemes I
, Doc. Math. 13 (2008), 505–551.
•
Semistable Conjecture via K-theory
, Duke Math. J. 141 (2008), no. 1, 151–178.
•
p-adic motivic cohomology in arithmetic
, International Congress of Mathematicians. Vol. II, 459–472, Eur. Math. Soc., Zürich, 2006.
•
Toric singularities: log-blow-ups and global resolutions
, J. Algebraic Geom. 15 (2006), no. 1, 1–29.
•
Cohomology of crystalline smooth sheaves
, Compositio Math. 129 (2001), no. 2, 123–147.
•
Crystalline Conjecture via K-theory
, Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 5, 659–681.
•
On the image of p-adic regulators
, Invent. Math. 127 (1997), 375–400.
•
Duality in the cohomology of crystalline local systems
, Compositio Math. 109 (1997), no. 1, 67–97.
•
Cohomology of crystalline representations
, Duke Math. J. 71 (1993), no. 3, 747–791.
Talks
p-adic motivic cohomology in arithmetic geometry
, slides of a talk given at ICM2006, Madrid.
p-adic Hodge Theory: from algebraic to analytic varieties
, slides of a talk given at PTM-100, Kraków, 2019.