Christian Blanchet

Institut de Mathématiques de Jussieu - Paris Rive Gauche (UMR 7586)
Université Paris Diderot / Université Pierre et Marie Curie
Bâtiment Sophie Germain, plan d'accès.
Case 7012
75205 PARIS CEDEX 13


Bureau 734, tél +33 1 57 27 91 57
firstname.name@imj-prg.fr (firstname=christian,name=blanchet)



Journées TQFT, groupes quantiques et invariants non commutatifs

3-4 mai 2016, batiment Sophie Germain, salle 2014



Domaines de recherche

Topologie de basse dimension, théorie des noeuds, topologie quantique, catégories modulaires, TQFTs non semi-simples,
homologie de Khovanov, homologie de Heegaard-Floer (Ozsvath-Szabo).

Liens


Publications (arXiv)

  1. C. Blanchet, F. Costantino, N. Geer, B. Patureau. Non semi-simple TQFTs, Reidemeister torsion and Kashaev's invariants , Advances in Mathematics 301 (2016) 1–78, arXiv:1404.7289
  2. C. Blanchet, F. Costantino, N. Geer, B. Patureau. Non semi-simple TQFTs from unrolled quantum sl(2), Proceedings of the Gökova Geometry-Topology Conference 2015 , arXiv:1605.07941.
  3. A. Beliakova, C. Blanchet, E. Contreras. Spin Modular Categories , to appear in Quantum Topology, arXiv:1411.4232.
  4. C. Blanchet, F. Costantino, N. Geer, B. Patureau. Non semi-simple sl2 quantum invariants, spin case Acta Math Vietnamica, Vol 39 No 4 (2014) 481-495.
  5. C. Blanchet, An oriented model for Khovanov homology. Journal of Knot Theory and Its Ramifications Vol. 19, N. 2 (2010) 291-312.( pdf)
  6. A. Beliakova, C. Blanchet, T. Le, Unified quantum invariants and their refinements for homology 3-spheres with 2-torsion . Fundamenta Mathematicae, Vol. 201, N. 3 (2008) 217-239.
  7. C. Blanchet, Link homology and trivalent TQFT Oberwalfach report 22/2008, 1168--1170.
  8. C. Blanchet, V.Turaev, Quantum Invariants of 3-manifolds. Encyclopedia of Mathematical Physics, Elsevier 2006, 117-123 ( pdf)
  9. C. Blanchet, V.Turaev, Axiomatic approach to TQFT. Encyclopedia of Mathematical Physics, Elsevier 2006, 232-234 ( pdf)
  10. C. Blanchet, A spin decomposition of the Verlinde formulas for type A modular categories. Comm. in Math. Physics , Vol. 257, N. 1, May 2005, 1 - 28.
  11. C. Blanchet, E. Gallais, Combinatorial Topology and Discrete Morse Theory. In Differential geometry and topology, discrete and computational geometry, J.M. Morvan and M. Boucetta editors, NATO Science Series III (2004). ( pdf )
  12. C. Blanchet, Introduction to quantum invariants of 3-manifolds, topological quantum field theories and modular categories. Cardona, Alexander (ed.) et al., Proceedings of the summer school on geometric and topological methods for quantum field theory, Villa de Leyva, Colombia, July 9-27, 2001. River Edge, NJ: World Scientific. 228-264 (2003). ( ps)
  13. A. Beliakova, C. Blanchet, Skein construction of idempotents in the Birman-Murakami-Wenzl algebras . Math Ann 321 (2001) 2, 347-373.
  14. A. Beliakova, C. Blanchet, Modular Categories of types B,C and D . Comment. Math. Helv. 76 (2001) 467-500.
  15. C. Blanchet, Hecke algebras, modular categories and 3-manifolds quantum invariants, Topology 39 (2000) 193-223.
  16. C. Blanchet, Refined quantum invariants for three-manifolds with structure, Banach Center Pub. Vol. 42 (1998), 11-22.
  17. H. Abchir, C. Blanchet, On the computation of the Turaev-Viro module of a Knot, Journal of Knot Theory and its Ramifications, Vol. 7, No 7 (1998), 843-856.
  18. C. Blanchet, G. Masbaum, Topological quantum field theories for surfaces with spin structure, Duke Mathematical Journal 82 (1996), 229-267.
  19. C. Blanchet, N. Habegger, G. Masbaum, P. Vogel, Topological Quantum Field Theories derived from the Kauffman bracket, Topology 34 (1995), 883-927.
  20. C. Blanchet, N. Habegger, G. Masbaum, P. Vogel, Remarks on the Three-manifold Invariants theta_p, in `Operator Algebras, Mathematical Physics, and Low Dimensional Topology', Ed. by R. Herman and B. Tanbay, Research Notes in Mathematics Vol 5, 39-59.
  21. C. Blanchet, Invariants on three-manifolds with spin stucture, Comm. Math. Helv. 67(1992), 406-427.
  22. C. Blanchet, N. Habegger, G. Masbaum, P. Vogel, Three-manifold invariants derived from the Kauffman bracket, Topology 31 (1992), 685-699.

  23. Notes de mini-cours et école d'été