Articles on inverse Galois theory

L. Schneps: Construction explicite de 2-groupes extra-spéciaux, Publ. Fac. Sci. Besancon 1989-91 (1991).

L. Schneps: On cyclic field extensions of degree 8, Math. Scand. 71 (1992).

D. Martinais and L. Schneps: Polynomes à groupe de Galois diédral, Sém. Th. Nombres Bordeaux 4 (1992).

D. Martinais and L. Schneps: A complete parametrization of cyclic field extensions of 2-power degree, Manuscr. Math. 80 Fasc. 2 (1993).

L. Schneps: On reduction of p-groups, Comm. Alg. 21(5) (1993).

L. Schneps: On Galois groups and their maximal 2-subgroups, Isr. Math. J. 93 (1996).

Articles on Grothendieck-Teichmüller theory and multiple zeta value theory

L. Schneps: Groupe de Grothendieck-Teichmüller et automorphismes de groupes de tresses , CR Acad. Sci. 317 Série I (1993).

L. Schneps: Dessins d'enfants on the Riemann Sphere, in The Grothendieck Theory of Dessins d'Enfants, LMS Lecture Notes 200, Cambridge U. Press, 1994.

P. Lochak, L. Schneps: The Grothendieck-Teichmüller group and automorphisms of braid groups, in The Grothendieck Theory of Dessins d'Enfants, LMS Lecture Notes 200, Cambridge U. Press, 1994.

D. Harbater, L. Schneps: Approximating Galois orbits of dessins, in Geometric Galois Theory I, LMS Lecture Notes 242, Cambridge U. Press, 1997.

L. Schneps: The Grothendieck-Teichmüller group: a survey, in Geometric Galois Theory I, LMS Lecture Notes 242, Cambridge U. Press, 1997.

L. Schneps: Grothendieck's ``Long March through Galois Theory'', in Geometric Galois Theory I, LMS Lecture Notes 242, Cambridge U. Press, 1997.

P. Lochak, L. Schneps: On the universal Ptolemy-Teichmüller groupoid, in Geometric Galois Theory II, LMS Lecture Notes 243, Cambridge U. Press, 1997.

P. Lochak, L. Schneps: A cohomological interpretation of the Grothendieck-Teichmüller group, Invent. Math. 127 (1997).

P. Lochak, H. Nakamura, L. Schneps: On a new version of the Grothendieck-Teichm\"uller group, Note aux CR Acad. Sci. 315, Série I (1997).

L. Schneps: Fundamental groupoids of genus zero moduli spaces and braided tensor categories, Panoramas et Synthèses 7, SMF, 1999.

D. Harbater, L. Schneps: Fundamental groups of moduli and the Grothendieck-Teichmüller group, Trans. of the AMS 352 No. 7 (2000).

A. Hatcher, P. Lochak, L. Schneps: On the Teichmüller tower of mapping class groups, J. reine angew. Math. 521 (2000).

H. Nakamura, L. Schneps: On a subgroup of the Grothendieck-Teichmüller group acting on the tower of profinite Teichmüller modular groups, Invent. Math. 141 (2000).

L. Schneps: Special loci in moduli spaces of curves, in Galois Groups and Fundamental Groups , L. Schneps, ed., MSRI series 41, Cambridge University Press, 2003.

P. Lochak, H. Nakamura, L. Schneps: Eigenloci of 5 point configurations on the Riemann sphere and the Grothendieck-Teichmüller group, Math. J. Okayama 46 (2004).

L. Schneps: On the Poisson bracket on the free Lie algebra in two generators, J. Lie Theory 16 No. 1, 19-37 (2006).

L. Schneps: Automorphisms of curves and their role in Grothendieck-Teichmüller theory, Math. Nach. 279 No. 5-6, 656-671 (2006).

P. Lochak, L. Schneps: Open problems in Grothendieck-Teichmüller theory, in Problems on mapping class groups and related topics, Proc. Sympos. Pure Math. 74, Amer. Math. Soc. (2006), 165-186.

L. Schneps: A review of the Grothendieck-Serre Correspondence: Long version     Short version--reprinted from the Mathematical Intelligencer, Vol. 29 No. 4, 2007.

Parker's conjecture , a short informal note containing the proof of Parker's conjecture on field of moduli of dessins with cyclic or 2-generator abelian groups. But see also the following short text by Corneliu Hoffman disproving the general case of Parker's conjecture.

F. Brown, S. Carr, L. Schneps: The algebra of cell-zeta values, Compositio Math. 146 (2010) No. 3, 731-771.

S. Carr, L. Schneps: Combinatorics of the double-shuffle Lie algebra in Galois-Teichmüller theory and Arithmetic Geometry, H. Nakamura, F. Pop, L. Schneps, A. Tamagawa, eds., Adv. Stud. Pure Math. 63, Mathematical Society of Japan, 2012.

L. Schneps: Double shuffle and Kashiwara-Vergne Lie algebras, J. Algebra 367 (2012), 54-74.

S. Baumard, L. Schneps, Period polynomial relations between double zeta values, Ramanujan J. 32 No. 1 (2013), 83-100.

L. Schneps: Dual-depth adapted irreducible formal multizeta values, Math. Scand. 113 Fas. 1 (2013), 53-62.

P. Lochak, L. Schneps, Every acyclotomic element of the profinite Grothendieck-Teichmüller group is a twist, Romanian J. Pure and Applied Math. LX, No. 2 (2015), 117-128.

S. Carr, H. Gangl, L. Schneps, On the Broadhurst-Kreimer generating series for multiple zeta values, to appear in the Proceedings of the Madrid-ICMAT conference on Multizetas, 2015.

S. Baumard, L. Schneps, On the derivation representation of the fundamental Lie algebra of mixed elliptic motives, Ann. Math. Québec 41 (1) (2014), 43-62.

L.~Schneps, ARI, GARI, Zig and Zag: An introduction to Ecalle's theory of multiple zeta values, arXiv:1507.01534, 2015.

L.~Schneps, Elliptic multiple zeta values, Grothendieck-Teichm\"uller and mould theory, arXiv:1506.09050, 2015.

A.~Salerno, L.~Schneps, Mould theory and the double shuffle Lie algebra structure, arXiv:1510.05535, 2015.

N.~Matthes, P.~Lochak, L.~Schneps, Elliptic multiple zeta values and the elliptic double shuffle relations, arXiv:1703.09410, 2017.

E.~Raphael, L.~Schneps, On linearised and elliptic versions of the Kashiwara-Vergne Lie algebra, arXiv:1706.08299, 2017.

Articles on Forensic Mathematics (probability and statistics in forensic science)

L. Schneps, Quand les maths débarquent dans les tribunaux, Maths Société Express, CIJM, 2016.

L. Schneps avec L. Ben Ytzhak, De l'erreur de calcul à l'erreur judiciaire, Carnets de Science No.2 and Journal du CNRS, juillet 2017.

D. Balding, N. Fenton, R. Gill, D. Lagnado, L. Schneps, Twelve Guiding Principles and Recommendations for Dealing with Quantitative Evidence in Criminal Law, Newton Institute Preprint Series 16061, 2017.

L. Schneps, À vous de juger, La Recherche Hors-Série 26, juin-juillet 2018.

L. Schneps, R. Overill, D. Lagnado, Ranking the impact of different tests on a hypothesis in a Bayesian network, Entropy 20(11) (2018), 856-860.

L. Schneps, Statistiques, Probabilité et Justice, to appear in Pensée probabiliste, pensée statistique, Cahiers Philosophiques, Vrin, 2019.